Proposed Checkpoint Change

Corrections

- What did you get wrong and why?
- 2. Create question like the one missed, and then provide a solution.
- 3. Step me through your solution.

- No limit to the number of corrections you can make.
- Must pass six checkpoints and attempt the seventh.

Fibonacci Heaps

https://cs.pomona.edu/classes/cs140/

Outline

Topics and Learning Objectives

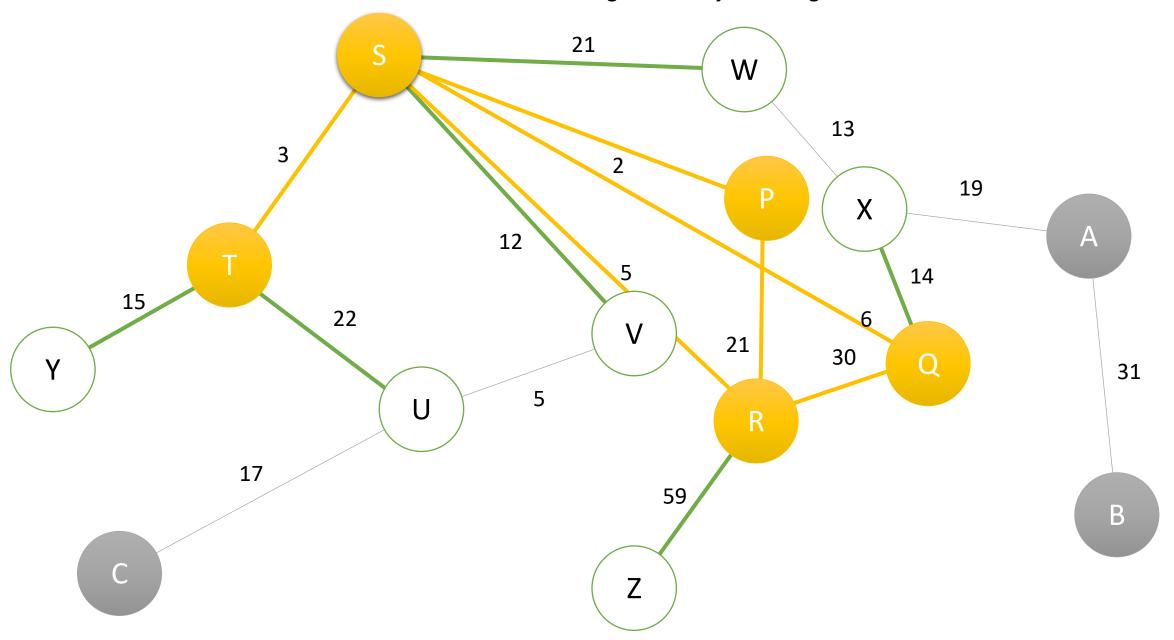
- Discuss Fibonacci Heaps
- Understand the benefits of Fibonacci Heaps
- Analyze the amortized running time of Fibonacci Heaps

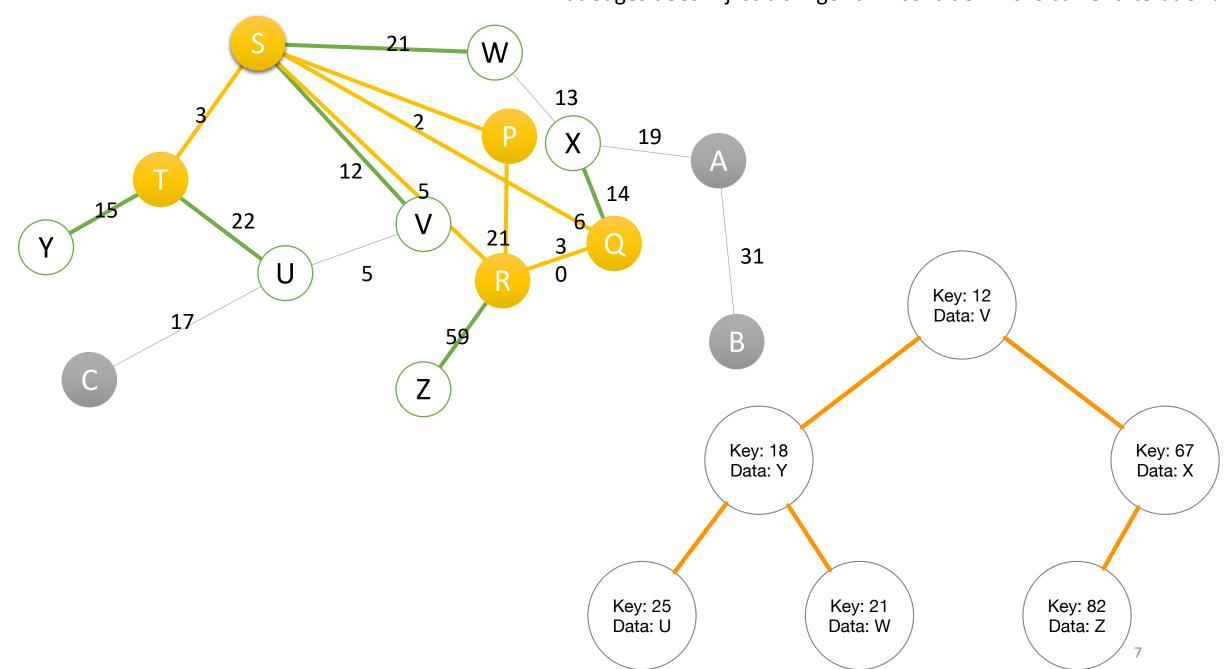
Exercise

Fibonacci Heap practice

Extra Resources

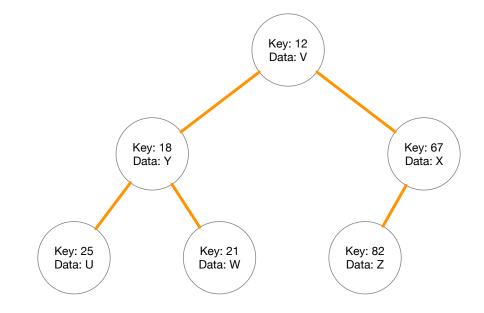
- https://www.cl.cam.ac.uk/teaching/2021/Algorithms/notes2.pdf
 - Section 7





Dijkstra's Reminders

During each iteration we need to:



Extract Min

- 1. Find the vertex v that
 - Is reachable from the start vertex using the vertices found so far
 - Has the minimal path length from the start vertex among all options

Decrease Key

2. Update the possible paths lengths of all vertices connected to \mathbf{v}

Binary Heap Priority Queue

- An almost-full binary tree
- Satisfies the heap property

<u>Insert</u>

Add to the end and bubble up, O(lg n)

Extract-Min

Replace root with last node and bubble down, O(lg n)

Decrease-Key

Change key and bubble up, O(lg n)

Binomial Heap Priority Queue

- Uses a forest of binomial trees with no more than one tree of each degree
- Maintaining the binomial forest property
 - 1. A single node (a tree with degree 0)
 - 2. Two trees of degree 0 can be merged (degree 1)
 - 3. Two trees of degree 1 can be merged (degree 2)
 - 4. Two trees of degree 2 can be merged
 - 5. ...

- Degree denotes a node's number of children
- Merge by making one tree a child of the other

Example Binomial Heap

Operations:

- Insert 10
- Insert 16
- Insert 12
- Insert 14
- Insert 8
- Insert 17
- Insert 20
- Extract-Min
- Extract-Min

Binomial Heap Priority Queue

You don't need to understand the details, we just want to compare with a Fibonacci Heap

- Uses a forest of binomial trees, each satisfies the heap property
- At most one tree of each degree

<u>Insert</u>

- Create a new, single-node tree and merge as needed, $O(1)_{amortized}$ Extract-Min
- Remove min root, promote its children, and merge as needed, O(lg n)
 Decrease-Key
- Change key and bubble up, O(lg n)

Linked List Priority Queue

- A normal, doubly linked-list
- Really, nothing special but good for comparison

<u>Insert</u>

• Add to the end and update min pointer if needed, O(1)

Extract-Min

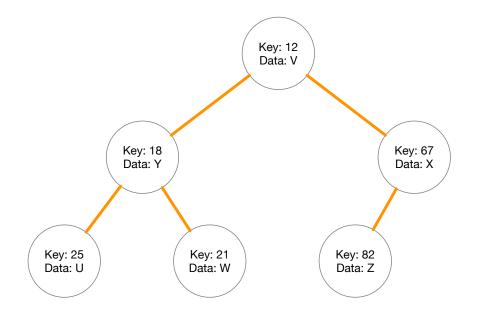
Remove the min node, then find the new min node, O(n)

Decrease-Key

• Change key and update min pointer if needed, O(1)

Priority Queue Comparison

	Find Min	Extract Min	Insert	Decrease Key
Binary Heap	O(1)	O(lg n)	O(lg n)	O(lg n)
Binomial Heap	O(1)	O(lg n)	O(1) amortized	O(lg n)
Linked List	O(1)	O(n)	O(1)	O(1)
Fibonacci Heap	O(1)	O(lg n) amortized	O(1)	O(1) amortized



Originally created to improve Dijkstra's Single Source Shortest Path Algorithm

 $O(m + n \lg n)$

Time to call "Decrease Key" for each edge.

Time to call "Extract Min" on each vertex.

Quick Note on Amortized Analysis

• We skipped this lecture, but we might fit it back in later

- Here's the important part
 - If we perform an operation k times, then

Total true cost = O(Amortized cost)

Total true cost \leq c (Amortized cost) for all $n \geq n_0$

We might do a lot of work in one call, but this work will benefit later calls

Fibonacci Heap, Basic Idea

- Maintain a set of Heaps (not necessarily binomial trees)
- Maintain a pointer to the minimum element
 - The minimum element will be the root of one of the heaps
- Maintain a set of "marked" nodes
- Lazily add nodes
- Cleanup in batches (more efficient this way)

Fibonacci Heap Details

```
FUNCTION FibPQInsert(pq, value, key)

newNode = HeapNode(value, key)

pq.heaps.add(newNode)

pq.lookupTable[value] = newNode

IF newNode.key < pq.minNode.key THEN pq.minNode = newNode

Example</pre>
```

Running Time?

FUNCTION FibPQExtractMin(pq) # Remove the minimum heap node # Promote children # Continually merge heaps with the same degree • • • # Create new list of root heaps # Set the new minimum

FUNCTION FibPQExtractMin(pq)

```
# Remove the minimum heap node
                              extractedNode = pq.minNode
                              pq.heaps.remove(extractedNode)
 Promote children
 Continually merge heaps with the same degree
...
# Create new list of root heaps
                                        STRUCT PQ<T>
...
                                           heaps: Set[HeapNode<T>] = []
                                           minNode: HeapNode<T> = NONE
# Set the new minimum
                                           lookupTable: Dict[T, HeapNode<T>] = {}
```

```
FUNCTION FibPQExtractMin(pq)
   # Remove the minimum heap node
                                 extractedNode = pq.minNode
                                 pq.heaps.remove(extractedNode)
   # Promote children
                                 FOR child IN minNode.children
                                    child.isLoser = FALSE
   # Continually merge heaps wit
                                    pq.heaps.add(child)
   # Create new list of root heaps
                                             STRUCT HeapNode<T>
                                                value: T
                                                key: Comparable
   # Set the new minimum
                                                degree: Integer = 0
                                                 isLoser: Boolean = FALSE
                                                parent: HeapNode<T> = NONE
   RETURN extractedNode.value
                                                children: List[HeapNode<T>] = []
```

FUNCTION FibPQExtractMin(pq)

Remove the minimum heap node

Same process as for Binomial Heaps

Continually merge heaps with the same degree

heapsByDegree = [NONE **FOR IN** pq.heaps]

FOR heap IN pq.heaps

currentHeap = heap

```
# Promote children
# Continually merge heaps
# Create new list of root
# Set the new minimum
```

LOOP currentDegree = currentHeap.degree BREAK IF heapsByDegree[currentDegree] != NONE heapWithSameDegree = heapsByDegree[currentDegree] heapsByDegree[currentDegree] = NONE # Merge two trees IF currentHeap.key < heapWithSameDegree.key</pre> currentHeap.degree += 1 currentHeap.children.append(heapWithSameDegree) heapWithSameDegree.parent = currentHeap ELSE heapWithSameDegree.degree += 1 heapWithSameDegree.children.append(currentHeap) currentHeap.parent = heapWithSameDegree

heapsByDegree[currentDegree] = currentHeap

```
# Remove the minimum heap node

....

extractedNode = pq.minNode

pq.heaps.remove(extractedNode)

# Continually merge heaps with
...

# Continually merge heaps with
...

pq.heaps.add(child)
```

```
# Create new list of root heaps
```

```
pq.heaps = [heap FOR heap IN heapsByDegree IF heap != NONE]
```

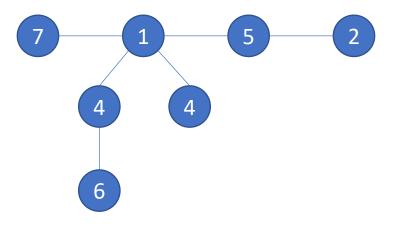
Set the new minimum

• • •

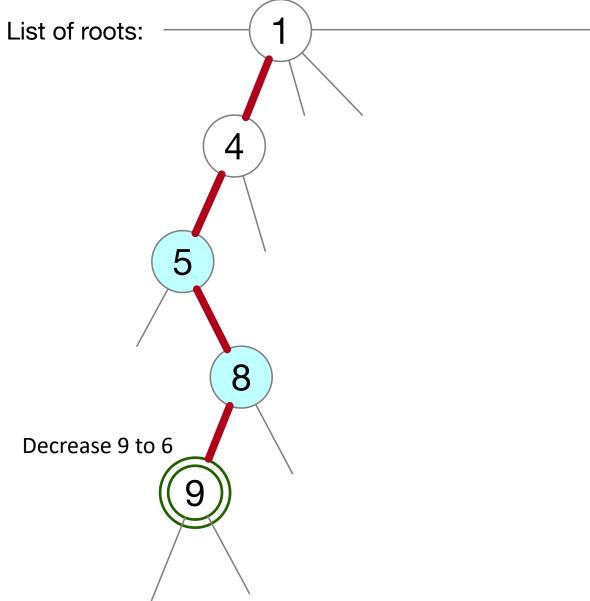
```
FUNCTION FibPQExtractMin(pq)
   # Remove the minimum heap node
                                 extractedNode = pq.minNode
   # Promote children
                                 pq.heaps.remove(extractedNode)
                                 FOR child IN minNode children
                                    child.isLoser = FALSE
    Continually merge heaps with
                                    pq.heaps.add(child)
                           pq.heaps = [heap FOR heap IN heapsByDegree IF heap != NONE]
   # Create new list of root neaps
                               pq.minNode = pq.heaps[0]
    Set the new minimum
                               FOR heap IN pq.heaps[1..]
                                  IF heap.key < pq.minNode.key THEN pq.minNode = heap</pre>
```

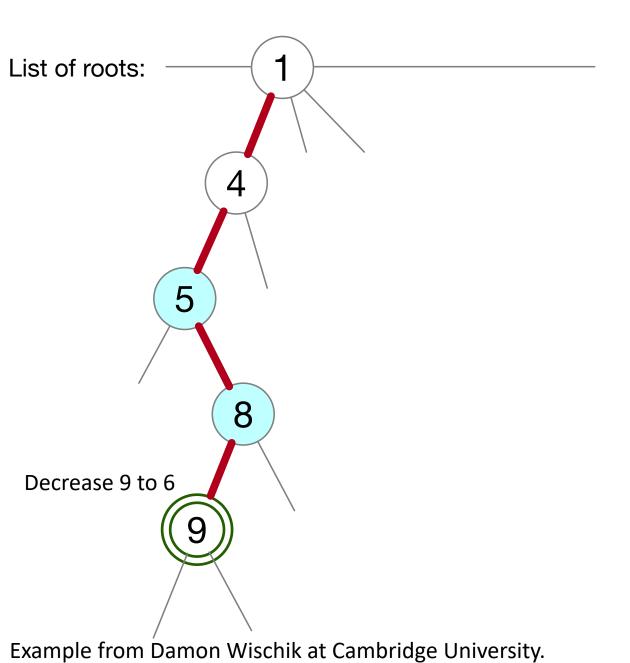
FUNCTION FibPQExtractMin(pq)

- # (1) Remove the minimum
 # heap node
- # (2) Promote children
- # (3) Continually merge
 # heaps with the same
 # degree
- # (4) Create new list of
 # root heaps
- # (5) Set the new minimum
- # (6) Return the extracted
 # node

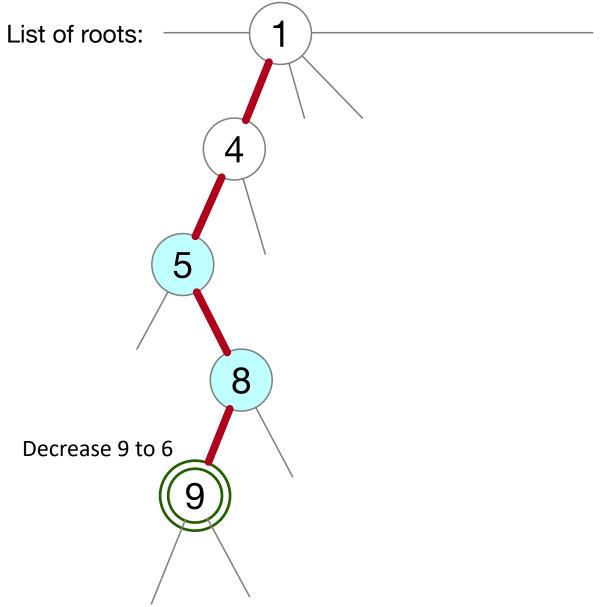


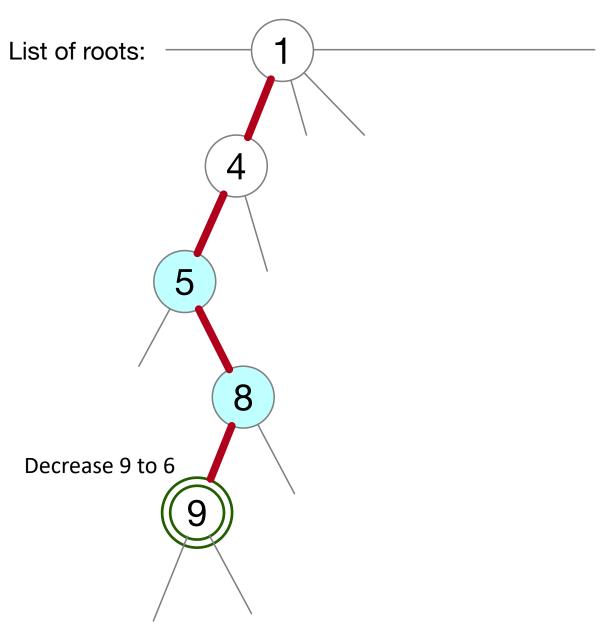
```
FUNCTION FibPQDecreaseKey(pq, value, newKey)
   node = pq.lookupTable[value]
   node.key = newKey
   parent = node.parent
                                                        Exercise
   IF parent != NONE && node.key < parent.key</pre>
     LOOP
         parent.children.remove(node)
         pq.heaps.add(node)
         IF node.key < pq.minNode.key THEN pq.minNode = node</pre>
         node.isLoser = FALSE
         BREAK IF parent == NONE | parent.isLoser == FALSE
         node = parent
      IF parent != NONE
         parent.isLoser = TRUE
```





```
FUNCTION FibPQDecreaseKey(pq, value, newKey)
   node = pq.lookupTable[value]
   node.key = newKey
   parent = node.parent
   IF parent != NONE && node.key < parent.key</pre>
      LOOP
         parent.children.remove(node)
         pq.heaps.add(node)
         IF node.key < pq.minNode.key THEN pq.minNode = node</pre>
         node.isLoser = FALSE
         BREAK IF parent == NONE || parent.isLoser == FALSE
         node = parent
      IF parent != NONE
         parent.isLoser = TRUE
```





Fibonacci Heaps Insert Running Time

Insert

 All we do is add a single node to the list of heaps and then check to see if it is the new minimum node

Extract-Min

- 1. Remove the minimum heap node
- 2. Promote children
- 3. Continually merge heaps with the same degree
- 4. Create new list of root heaps
- 5. Set the new minimum
- 6. Return the extracted node

Which of these are the easiest?

Extract-Min

- 1. Remove the minimum heap node, O(1)
- 2. Promote children
- 3. Continually merge heaps with the same degree
- 4. Create new list of root heaps
- 5. Set the new minimum
- 6. Return the extracted node, O(1)

Extract-Min

- 1. Remove the minimum heap node, O(1)
- 2. Promote children
- 3. Continually merge heaps with the same degree
- 4. Create new list of root heaps
- 5. Set the new minimum
- 6. Return the extracted node, O(1)

Promote children

- What is the maximum number of children for the minimum?
- It depends on the number of nodes in the Fibonacci heap
- For now, let's call this d_{max}
 - This is the maximum degree of any node
 - Remember that degree denotes the number of direct children of a node
 - We'll figure how an upper bound on d_{max} later
- Promotion then takes $O(d_{max})$

Extract-Min

- 1. Remove the minimum heap node, O(1)
- 2. Promote children, $O(d_{max})$
- 3. Continually merge heaps with the same degree
- 4. Create new list of root heaps
- 5. Set the new minimum
- 6. Return the extracted node, O(1)

Continually merge heaps with the same degree

- With n nodes in the Fibonacci heap, what is the maximum number of merges we can perform?
- O(n) For example, if we have a bunch of singleton heaps.
- This seems like we will do O(n) work to perform the Extract-Min operation!
- However, we very rarely perform O(n) merges
- An amortized analysis tells us that the aggregate cost of this operation is actually O(lg n)

Extract-Min

- 1. Remove the minimum heap node, O(1)
- 2. Promote children, $O(d_{max})$
- Continually merge heaps with the same degree, O(lg n)
- 4. Create new list of root heaps
- 5. Set the new minimum
- 6. Return the extracted node, O(1)

```
FUNCTION FibPQExtractMin(pq)
   # Remove the minimum heap node
   • • •
    Promote children
     Continually merge heaps with the same degree
   • • •
   # Create new list of root heaps
                            pq.heaps = [heap FOR heap IN heapsByDegree IF heap != NONE]
   # Set the new minimum
                            pq.minNode = pq.heaps[0]
                            FOR heap IN pq.heaps[1..]
                               IF heap.key < pq.minNode.key THEN pq.minNode = heap</pre>
   RETURN extractedNode.value
```

Extract-Min

- 1. Remove the minimum heap node, O(1)
- 2. Promote children, $O(d_{max})$
- 3. Continually merge heaps with the same degree, O(lg n)_{amortized}
- 4. Create new list of root heaps, $O(d_{max})$
- 5. Set the new minimum, $O(d_{max})$
- 6. Return the extracted node, O(1)

We'll come back to d_{max} in a bit!

Fibonacci Heaps Decrease-Key Running Time

Decrease-Key

- 1. Change key in constant time
- 2. Two cases
 - 1. If there is no heap violation, then we are done
 - 2. If there is a heap violation, then we recursively
 - 1. Promote the node
 - 2. Check if the parent is a double loser
 - 1. If the parent is not a loser, then we mark it as a loser and we are done
 - 2. Otherwise, we continue to "promote the node" with parent as the current node

Fibonacci Heaps Decrease-Key Running Time

Decrease-Key

1. Change key in constant time

What is the running time of this path?

- 2. Two cases
 - 1. If there is no heap violation, then we are done
 - 2. If there is a heap violation, then we recursively
 - 1. Promote the node
 - 2. Check if the parent is a double loser
 - 1. If the parent is not a loser, then we mark it as a loser and we are done
 - 2. Otherwise, we continue to "promote the node" with parent as the current node

Fibonacci Heaps Decrease-Key Running Time

Decrease-Key

- 1. Change key in constant time
- 2. Two cases
 - 1. If there is no heap violation, then we are done
 - 2. If there is a heap violation, then we recursively
 - 1. Promote the node

What is the running time of this path?

- 2. Check if the parent is a double loser
 - 1. If the parent is not a loser, then we mark it as a loser and we are done
 - 2. Otherwise, we continue to "promote the node" with parent as the current node

It appears to be O(lg n)

Losers, d_{max} , and Naming Rights

- We only merge trees with the same degree
- Looking at a single tree with degree d, you'll see that
 - The leftmost child has degree d-1
 - The second from the left has degree d-2
 - The third from the left has degree d-3
 - And so on
 - The rightmost child has degree 0
- If a node loses one child, then we have the same basic structure
- If a node loses two children, then it is kicked out of the tree

Nd > # of nodes Losers, d_{max} , and Naming Rights Nd = Nd-2+ Nd-1

Summary

- Fibonacci Heaps are based on the idea of lazy cleanup
- We don't fix the binomial trees until we can fix a bunch at the same time
- We need amortized analysis to show a more useful running time (instead of a worst-case running time)

	Find Min	Extract Min	Insert	Decrease Key
Binary Heap	O(1)	O(lg n)	O(lg n)	O(lg n)
Binomial Heap	O(1)	O(lg n)	O(1) amortized	O(lg n)
Linked List	O(1)	O(n)	O(1)	O(1)
Fibonacci Heap	O(1)	O(lg n) amortized	O(1)	O(1) amortized