Heaps

https://cs.pomona.edu/classes/cs140/

Outline

Topics and Learning Objectives

- Discuss data structure operations
- Cover heap sort
- Discuss heaps

Exercise

- Heap practice

Extra Resources

- Introduction to Algorithms, 3rd, chapter 6
- Algorithms Illuminated, Part 2: Chapter 10

Data Structures

Used in essentially every single programming task that you can think of

- What are some examples of data structures?
-What are some example programs?

What do they do?

- They organize data so that it can be effectively accessed.
- A data structure is not necessarily a method of laying out data in memory
- It is a way of logically thinking about your data.

The Heap Data Structure (not heap memory)

A container for objects that have key values (Sometimes called a "Priority Queue")

Operations:

- Insert : O(lgn)
- Extract-Min (or max) : O(lg n)
- Heapify : O(n) for batched inserts
- Arbitrary Deletion : O(lg n)
- Good for continually getting a minimum (or maximum) value

Heap used to improve algorithm

Selection sort

- Continually look for the smallest element
- The element currently being considered is in blue
- The current smallest element is in red
- Sorted elements are in yellow

Heap used to improve algorithm

Selection sort

- Continually look for the smallest element
- The element currently being considered is in blue
- The current smallest element is in red
- Sorted elements are in yellow

Heap used to improve algorithm

Selection sort

- Continually look for the smallest element
- The element currently being considered is in blue
- The current smallest element is in red
- Sorted elements are in yellow

| 8 |
| :--- | :--- |
| 5 |
| 2 |
| 6 |
| 9 |
| 3 |
| 1 |
| 4 |
| 0 |
| 7 |

Heap used to improve algorithm

Selection sort

- Continually look for the smallest element

What is the runtime of selection sort?
How can we make it faster with a heap?

With a heap: $\mathrm{O}\left(\mathrm{n}^{2}\right) \rightarrow \mathrm{O}(\mathrm{n} \lg \mathrm{n})$

- Insert all elements into a heap: n
- Extract each element: n * $\lg \mathrm{n}$

Example : Event Manager

Uses a priority queue (synonym for Heap)

Example: simulation or game

- play sounds
- render animation We can probably delay this without much trouble.
- detect collisions
- register input

Probably the most important to get correct. But does it need to be the highest priority?

Heap Implementation

Conceptually you should think of a Heap as a binary tree But it is implemented using an array (why?)

Heap Property: for any given node x,

1. $\operatorname{key}[x] \leq \operatorname{key}[x$'s left child], and
2. $\operatorname{key}[x] \leq \operatorname{key}[x$'s right child]

Where is the minimum key?

Heap Implementation

Note: Heaps are not unique
You can have multiple different configurations that hold the same data

Exercise

Insert: 7
Where should it go?

11
13

Insert: 7

Extract-Min


```
FUNCTION Dijkstra(G, start_vertex)
    found = {}
    lengths = {v: INFINITY FOR v IN G.vertices}
```

found.add(start_vertex)
lengths[start_vertex] = 0
WHILE found.length ! = G.vertices.length \downarrow
FOR v IN found
FOR vOther, weight IN G.edges[v]
IF vOther NOT IN found
vOther_length = lengths[v] + weight IF vOther_length < min_length min_length = vOther_length vMin = vOther
found.add(vMin)
lengths[vMin] = min_length
RETURN lengths

What is the running time?

How many times does the
outer loop run?

```
            O(n)
```

 O(n)
 ~
 How many times do the inner
How many times do the inner
two loops run?

```
                            two loops run?
```

```
FUNCTION Dijkstra(G, start_vertex)
    found = {}
    lengths = {v: INFINITY FOR v IN G.vertices}
found.add(start_vertex)
lengths[start_vertex] = 0
WHILE found.length ! = G.vertices.length
FOR v IN found
FOR vOther, weight IN G.edges[v]
IF vOther NOT IN found
vOther_length = lengths[v] + weight IF vOther_length < min_length min_length = vOther_length vMin = vOther
found.add(vMin)
lengths[vMin] = min_length
RETURN lengths
```


What is the running time?

We can bring this down to O(m lg m) with a simple change.

State of the art of Dijkstra's:

$$
O(m+n \lg n)
$$

(uses Fibonacci heap)
def dijkstras_heap(adjacency_list, start_vertex):

```
"""Dijkstra's Algorithm implemented with all vertices placed in a heap.
```

This version of Dijkstra's Algorithm has a running time of O(m lg m).
"""
$n=$ len(adjacency_list)
path_lengths $=\{v:$ inf for v in adjacency_list $\}$
predecessors $=\{v:$ None for v in adjacency_list
path_lengths[start_vertex] $=0$
predecessors[start_-vertex] = None
found $=$ set()
vertex_min_heap $=$ [(path_lengths[start_vertex], start_vertex)]
while len (found) != n:
vfrom_length, vfrom $=$ heappop (vertex_min_heap)
found.add (vfrom)
for vto, weight in adjacency_list[vfrom]:
path_length $=$ vfrom_length + weight
if path_length < path_lengths[vto]:
path_lengths[vto] = path_length
predecessors[vto] = vfrom
heappush(vertex_min_heap, (path_lengths[vto], vto))
return path_lengths, predecessors

```
while len(found) != n:
```

 vfrom_length, vfrom = heappop(vertex_min_heap)
 found.add(vfrom)
 for vto, weight in adjacency_list[vfrom]:
 path_length \(=\) vfrom_length + weight
 if path_length < path_lengths[vto]:
 path_lengths[vto] = path_length
 predecessors[vto] = vfrom
 heappush(vertex_min_heap, (path_lengths[vto], vto))


```
def print_path(end_vertex, predecessors):
```

path $=$ [end_vertex]
pred = predecessors[end_vertex]
while pred is not None:
path.append (pred)
pred = predecessors[pred]
print(" -> ".join([str(v) for v in reversed(path)]))

Dijkstra's Algorithm Correctness

Theorem:

- Dijkstra's algorithm will find the shortest path from the start vertex to every other vertex on any graph with non-negative weights.

Proof using a loop invariant. Loop predicate:

- At the start of each iteration of the while loop, the shortest path has been found for every vertex in the found set

Initialization

Loop predicate/invariant: At the start of each iteration of the while loop, the shortest path has been found for every vertex in the found set

- Initially, the found set is empty. So, the invariant is trivially true.

```
found = set()
while len(found) != n:
    vfrom_length, vfrom = heappop(vertex_min_heap)
    found.add(vfrom)
    for vto, weight in adjacency_list[vfrom]:
        path_length = vfrom_length + weight
        if path_length < path_lengths[vto]:
                path_lengths[vto] = path_length
                predecessors[vto] = vfrom
```

 heappush (vertex_min_heap,
 (path_lengths[vto], vto) \({ }^{48}\)

Maintenance (1)

- Assume all previous iterations have produced the correct shortest path for all vertices in the found set.
- For purposes of a contradiction, assume that when a vertex u is added to the found set its path length is not optimal.
- At the time u is found we must have some path to u
each iteration of the while loop, the shortest path has been found for every vertex in the found set

```
while len(found) != n:
```

while len(found) != n:

```
while len(found) != n:
    vfrom_length, vfrom = heappop(vertex_min_heap)
    vfrom_length, vfrom = heappop(vertex_min_heap)
    vfrom_length, vfrom = heappop(vertex_min_heap)
    found.add(vfrom)
    found.add(vfrom)
    found.add(vfrom)
    for vto, weight in adjacency_list[vfrom]:
    for vto, weight in adjacency_list[vfrom]:
    for vto, weight in adjacency_list[vfrom]:
        path_length = vfrom_length + weight
        path_length = vfrom_length + weight
        path_length = vfrom_length + weight
        if path_length < path_lengths[vto]:
        if path_length < path_lengths[vto]:
        if path_length < path_lengths[vto]:
            path_lengths[vto] = path_length
            path_lengths[vto] = path_length
            path_lengths[vto] = path_length
            predecessors[vto] = vfrom
            predecessors[vto] = vfrom
            predecessors[vto] = vfrom
    heappush(vertex_min_heap,
    (path_l\overline{ength}s[vto], vto))
```


Maintenance (1)

- Assume all previous iterations have produced the correct shortest path for all vertices in the found set.
- For purposes of a contradiction, assume that when a vertex u is added to the found set its path length is not optimal.
- At the time u is found we must have some path to u

Loop predicate/invariant: At the start of each iteration of the while loop, the shortest path has been found for every vertex in the found set


```
while len(found) != n:
    vfrom_length, vfrom = heappop(vertex_min_heap)
    found.add(vfrom)
    for vto, weight in adjacency_list[vfrom]:
        path_length = vfrom_length + weight
        if path_length < path_lengths[vto]:
            path_lengths[vto] = path_length
            predecessors[vto] = vfrom
```


Maintenance (1) found

 each iteration of the while loop, the shortest path has been found for every vertex in the found set

- For purposes of a contradiction, assume that when a vertex u is added to the found set its path length is not optimal.
- At the time u is found we must have some path to u

- To have a shorter path to u, it must go through some vertex k not in found.
- But since we only have positive edges, a shorter path going through k, means that k must have been chosen before u. Contradiction.

Termination

Loop predicate/invariant: At the start of each iteration of the while loop, the shortest path has been found for every vertex in the found set

- The loop terminates when all vertices have been added to the found set.
- Given the loop invariant the shortest path to all vertices have been calculated.


```
while len(found) != n: vfrom_length, vfrom heappop(vertex_min_heap)
```

 found. add (vfrom)
    ```
for vto, weight in adjacency_list[vfrom]:
    path_length = vfrom_length + weight
    if path_length < path_lengths[vto]:
        path_lengths[vto] = path_length
        predecessors[vto] = vfrom
```

