
Heaps
https://cs.pomona.edu/classes/cs140/

https://cs.pomona.edu/classes/cs140/


Outline

Topics and Learning Objectives
• Discuss data structure operations
• Cover heap sort
• Discuss heaps

Exercise
• Heap practice

2



Extra Resources

• Introduction to Algorithms, 3rd, chapter 6
• Algorithms Illuminated, Part 2: Chapter 10

3



Data Structures

Used in essentially every single programming task that you can think of
• What are some examples of data structures?
• What are some example programs?

What do they do?
• They organize data so that it can be effectively accessed.

• A data structure is not necessarily a method of laying out data in memory
• It is a way of logically thinking about your data.

6



The Heap Data Structure (not heap memory)

A container for objects that have key values
(Sometimes called a “Priority Queue”)

Operations:
• Insert : O(lg n)
• Extract-Min (or max) : O(lg n)

• Heapify : O(n) for batched inserts
• Arbitrary Deletion : O(lg n)

• Good for continually getting a minimum (or maximum) value
7



Heap used to improve algorithm

Selection sort
• Continually look for the smallest element
• The element currently being considered is in blue
• The current smallest element is in red
• Sorted elements are in yellow

8



Heap used to improve algorithm

Selection sort
• Continually look for the smallest element
• The element currently being considered is in blue
• The current smallest element is in red
• Sorted elements are in yellow

9



Heap used to improve algorithm

Selection sort
• Continually look for the smallest element
• The element currently being considered is in blue
• The current smallest element is in red
• Sorted elements are in yellow

10



Heap used to improve algorithm

Selection sort
• Continually look for the smallest element

What is the runtime of selection sort?
How can we make it faster with a heap?

With a heap: O(n2) à O(n lg n)
• Insert all elements into a heap: n
• Extract each element: n * lg n

11



Example : Event Manager

Uses a priority queue (synonym for Heap)

Example: simulation or game
• play sounds
• render animation
• detect collisions
• register input Probably the most important to get correct. But does it need to be the highest priority?

We can probably delay this without much trouble.

12



Heap Implementation

Conceptually you should think of a Heap as a binary tree
But it is implemented using an array (why?)

Heap Property: for any given node x, 
1. key[x] ≤ key[x’s left child], and
2. key[x] ≤ key[x’s right child]

Where is the minimum key?

No pointer following
Fewer heap-allocations

No pointer storing

Key: 25
Data: U

Key: 12
Data: V

Key: 21
Data: W

Key: 67
Data: X

Key: 18
Data: Y

Key: 82
Data: Z

13



Heap Implementation

Note: Heaps are not unique
You can have multiple different configurations that hold the same data

4

4 8

6 4 12 9

4

4 4

6 9 8 12

14



parent_index = (node_index - 1) // 2

4

4 8

9 4 12 9

11 13

Value 4 4 8 9 4 12 9 11 13
Index 0 1 2 3 4 5 6 7 8

Parent

Level 0

Level 1

Level 2

Level 3

How do you calculate the 
index of a node’s parent?

- 0 1 2 2 3 310

0

1 2

3 4 5 6

7 8

15



4

4 8

9 4 12 9

11 13

Value 4 4 8 9 4 12 9 11 13
Index 0 1 2 3 4 5 6 7 8

Parent - 0 0 1 1 2 2 3 3

Left Child
Right Child

Level 0

Level 1

Level 2

Level 3

How do you calculate the 
indices of a node’s children?

parent_index = (node_index - 1) // 2

left_child_index = 2 * node_index + 1

right_child_index = 2 * (node_index + 1)

1 3 9 11 13 15 1775

2 4 10 12 14 16 1886

0

1 2

3 4 5 6

7 8

16



Exercise



4

4 8

9 4 12 9

11 13

Insert: 7
Where should it go?

18



4

4 8

9 4 12 9

11 13

Insert: 7

4 4 8 9 4 12 9 11 13

Where should it go?

We don’t want gaps 
in the array. They 
signal the end of a 

search.

19



4

4 8

9 4 12 9

11 13

Insert: 7

4 4 8 9 4 12 9 11 13 7

7

20



4

4 8

9 4 12 9

11 13

Insert: 10

4 4 8 9 4 12 9 11 13 7

7

21



4

4 8

9 4 12 9

11 13

Insert: 10

4 4 8 9 4 12 9 11 13 7 10

7 10

22



4

4 8

9 4 12 9

11 13

Insert: 5

4 4 8 9 4 12 9 11 13 7 10

7 10

23



4

4 8

9 4 12 9

11 13

Insert: 5

4 4 8 9 4 12 9 11 13 7 10 5

7 10 5

parent_index = (node_index - 1) // 2

24



4

4 8

9 4 12 9

11 13

Insert: 5

4 4 8 9 4 12 9 11 13 7 10 5

7 10 5

parent_index = (node_index - 1) // 2

25



4

4 8

9 4 5 9

11 13

Insert: 5

4 4 8 9 4 5 9 11 13 7 10 12

7 10 12

parent_index = (node_index - 1) // 2

26



4

4 8

9 4 5 9

11 13

Insert: 5

4 4 8 9 4 5 9 11 13 7 10 12

7 10 12

parent_index = (node_index - 1) // 2

27



4

4 5

9 4 8 9

11 13

4 4 5 9 4 8 9 11 13 7 10 12

7 10 12

What is the 
running time of an 

insert?

This is sometimes 
called “Bubbling-Up”

28



4

4 5

9 4 8 9

11 13

Extract-Min

4 4 5 9 4 8 9 11 13 7 10 12

7 10 12

What node do we 
put at the root in 

place of 4?

29



4

4 5

9 4 8 9

11 13

Extract-Min

4 4 5 9 4 8 9 11 13 7 10 12

7 10 12

What node do we 
put at the root in 

place of 4?

What if we 
choose a 

child?

?

30



4

4

5

9 4 8 9

11 13

Extract-Min

4 5 9 4 8 9 11 13 7 10 12

7 10 12

?

31



4

4

5

9

4

8 9

11 13

Extract-Min

4 4 5 9 8 9 11 13 7 10 12

7 10 12

?
32



4

4

5

9

4

8 9

11 13

Extract-Min

4 4 5 9 7 8 9 11 13 10 12

7

10 12?
33



4

4 5

9 4 8 9

11 13

Extract-Min

4 4 5 9 4 8 9 11 13 7 10 12

7 10 12

What node do we put in place of 4?

We are 
guaranteed to not 
leave a gap if we 
choose the last 

node.34



12

4 5

9 4 8 9

11 13

Extract-Min

12 4 5 9 4 8 9 11 13 7 10

7 10

left_child_index = 2 * node_index + 1

left_child_index = 2 * (node_index + 1)

35



12

4 5

9 4 8 9

11 13

Extract-Min

12 4 5 9 4 8 9 11 13 7 10

7 10

left_child_index = 2 * node_index + 1

left_child_index = 2 * (node_index + 1)

Do we swap with the 4 or the 5?

36



4

12 5

9 4 8 9

11 13

Extract-Min

4 12 5 9 4 8 9 11 13 7 10

7 10

left_child_index = 2 * node_index + 1

left_child_index = 2 * (node_index + 1)

37



4

12 5

9 4 8 9

11 13

Extract-Min

4 12 5 9 4 8 9 11 13 7 10

7 10

left_child_index = 2 * node_index + 1

left_child_index = 2 * (node_index + 1)

38



4

4 5

9 12 8 9

11 13

Extract-Min

4 4 5 9 12 8 9 11 13 7 10

7 10

left_child_index = 2 * node_index + 1

left_child_index = 2 * (node_index + 1)

39



4

4 5

9 12 8 9

11 13

Extract-Min

4 4 5 9 12 8 9 11 13 7 10

7 10

left_child_index = 2 * node_index + 1

left_child_index = 2 * (node_index + 1)

40



4

4 5

9 7 8 9

11 13

Extract-Min

4 4 5 9 7 8 9 11 13 12 10

12 10

left_child_index = 2 * node_index + 1

left_child_index = 2 * (node_index + 1)

Bubbling-Down

41



FUNCTION Dijkstra(G, start_vertex)
found = {}
lengths = {v: INFINITY FOR v IN G.vertices}

found.add(start_vertex)
lengths[start_vertex] = 0

WHILE found.length != G.vertices.length

FOR v IN found
FOR vOther, weight IN G.edges[v]

IF vOther NOT IN found

vOther_length = lengths[v] + weight
IF vOther_length < min_length

min_length = vOther_length

vMin = vOther
found.add(vMin)
lengths[vMin] = min_length

RETURN lengths

How many times does the 
outer loop run?

How many times do the inner 
two loops run?

What is the 
running time?

O(n)

O(m)

42



FUNCTION Dijkstra(G, start_vertex)
found = {}
lengths = {v: INFINITY FOR v IN G.vertices}

found.add(start_vertex)
lengths[start_vertex] = 0

WHILE found.length != G.vertices.length

FOR v IN found
FOR vOther, weight IN G.edges[v]

IF vOther NOT IN found

vOther_length = lengths[v] + weight
IF vOther_length < min_length

min_length = vOther_length

vMin = vOther
found.add(vMin)
lengths[vMin] = min_length

RETURN lengths

What is the 
running time?

We can bring this 
down to O(m lg m) 

with a simple change.

State of the art of Dijkstra’s:
O(m + n lg n)

(uses Fibonacci heap)

43



def dijkstras_heap(adjacency_list, start_vertex):
"""Dijkstra's Algorithm implemented with all vertices placed in a heap.

This version of Dijkstra's Algorithm has a running time of O(m lg m).
"""

n = len(adjacency_list)

path_lengths = {v: inf for v in adjacency_list}
predecessors = {v: None for v in adjacency_list}

path_lengths[start_vertex] = 0
predecessors[start_vertex] = None

found = set()
vertex_min_heap = [(path_lengths[start_vertex], start_vertex)]

while len(found) != n:
vfrom_length, vfrom = heappop(vertex_min_heap)
found.add(vfrom)

for vto, weight in adjacency_list[vfrom]:
path_length = vfrom_length + weight
if path_length < path_lengths[vto]:

path_lengths[vto] = path_length
predecessors[vto] = vfrom

heappush(vertex_min_heap, (path_lengths[vto], vto))

return path_lengths, predecessors

Not optimal but works 
very well in practice.

44



while len(found) != n:
vfrom_length, vfrom = heappop(vertex_min_heap)
found.add(vfrom)

for vto, weight in adjacency_list[vfrom]:
path_length = vfrom_length + weight
if path_length < path_lengths[vto]:

path_lengths[vto] = path_length
predecessors[vto] = vfrom

heappush(vertex_min_heap, (path_lengths[vto], vto))

A

B C

D

EF4

9

3

2

3

7

5

2

8

45



def print_path(end_vertex, predecessors):

path = [end_vertex]
pred = predecessors[end_vertex]

while pred is not None:

path.append(pred)
pred = predecessors[pred]

print(" -> ".join([str(v) for v in reversed(path)]))

46



Dijkstra’s Algorithm Correctness

Theorem:
• Dijkstra’s algorithm will find the shortest path from the start vertex to 

every other vertex on any graph with non-negative weights.

Proof using a loop invariant. Loop predicate:
• At the start of each iteration of the while loop, the shortest path has 

been found for every vertex in the found set

47



Initialization

• Initially, the found set is empty. 
So, the invariant is trivially true.

Loop predicate/invariant: At the start of 
each iteration of the while loop, the 
shortest path has been found for every 
vertex in the found set

while len(found) != n:
vfrom_length, vfrom = heappop(vertex_min_heap)
found.add(vfrom)

for vto, weight in adjacency_list[vfrom]:
path_length = vfrom_length + weight
if path_length < path_lengths[vto]:

path_lengths[vto] = path_length
predecessors[vto] = vfrom

heappush(vertex_min_heap,
(path_lengths[vto], vto))

…
found = set()
…

48



Maintenance (1)

• Assume all previous iterations 
have produced the correct 
shortest path for all vertices in 
the found set.
• For purposes of a contradiction, 

assume that when a vertex u is 
added to the found set its path 
length is not optimal.
• At the time u is found we must 

have some path to u

Loop predicate/invariant: At the start of 
each iteration of the while loop, the 
shortest path has been found for every 
vertex in the found set

while len(found) != n:
vfrom_length, vfrom = heappop(vertex_min_heap)
found.add(vfrom)

for vto, weight in adjacency_list[vfrom]:
path_length = vfrom_length + weight
if path_length < path_lengths[vto]:

path_lengths[vto] = path_length
predecessors[vto] = vfrom

heappush(vertex_min_heap,
(path_lengths[vto], vto))

49



Maintenance (1)

• Assume all previous iterations 
have produced the correct 
shortest path for all vertices in 
the found set.
• For purposes of a contradiction, 

assume that when a vertex u is 
added to the found set its path 
length is not optimal.
• At the time u is found we must 

have some path to u

Loop predicate/invariant: At the start of 
each iteration of the while loop, the 
shortest path has been found for every 
vertex in the found set

while len(found) != n:
vfrom_length, vfrom = heappop(vertex_min_heap)
found.add(vfrom)

for vto, weight in adjacency_list[vfrom]:
path_length = vfrom_length + weight
if path_length < path_lengths[vto]:

path_lengths[vto] = path_length
predecessors[vto] = vfrom

heappush(vertex_min_heap,
(path_lengths[vto], vto))

50



Maintenance (1)

• For purposes of a contradiction, 
assume that when a vertex u is 
added to the found set its path 
length is not optimal.
• At the time u is found we must have 

some path to u
• To have a shorter path to u, it must 

go through some vertex k not in 
found.
• But since we only have positive 

edges, a shorter path going through 
k, means that k must have been 
chosen before u. Contradiction.

Loop predicate/invariant: At the start of 
each iteration of the while loop, the 
shortest path has been found for every 
vertex in the found set

while len(found) != n:
vfrom_length, vfrom = heappop(vertex_min_heap)
found.add(vfrom)

for vto, weight in adjacency_list[vfrom]:
path_length = vfrom_length + weight
if path_length < path_lengths[vto]:

path_lengths[vto] = path_length
predecessors[vto] = vfrom

heappush(vertex_min_heap,
(path_lengths[vto], vto))

51



Termination

• The loop terminates when all 
vertices have been added to the 
found set.

• Given the loop invariant the 
shortest path to all vertices 
have been calculated.

Loop predicate/invariant: At the start of 
each iteration of the while loop, the 
shortest path has been found for every 
vertex in the found set

while len(found) != n:
vfrom_length, vfrom = heappop(vertex_min_heap)
found.add(vfrom)

for vto, weight in adjacency_list[vfrom]:
path_length = vfrom_length + weight
if path_length < path_lengths[vto]:

path_lengths[vto] = path_length
predecessors[vto] = vfrom

heappush(vertex_min_heap,
(path_lengths[vto], vto))

52


