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Outline

Topics and Learning Objectives
• Discuss data structure operations
• Cover heap sort
• Discuss heaps

Exercise
• Heap practice

2



Extra Resources

• Introduction to Algorithms, 3rd, chapter 6
• Algorithms Illuminated, Part 2: Chapter 10

3



Data Structures

Used in essentially every single programming task that you can think of
• What are some examples of data structures?
• What are some example programs?

What do they do?
• They organize data so that it can be effectively accessed.

• A data structure is not necessarily a method of laying out data in memory
• It is a way of logically thinking about your data.
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The Heap Data Structure (not heap memory)

A container for objects that have key values
(Sometimes called a “Priority Queue”)

Operations:
• Insert : O(lg n)
• Extract-Min (or max) : O(lg n)

• Heapify : O(n) for batched inserts
• Arbitrary Deletion : O(lg n)

• Good for continually getting a minimum (or maximum) value
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Heap used to improve algorithm

Selection sort
• Continually look for the smallest element
• The element currently being considered is in blue
• The current smallest element is in red
• Sorted elements are in yellow
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Heap used to improve algorithm

Selection sort
• Continually look for the smallest element
• The element currently being considered is in blue
• The current smallest element is in red
• Sorted elements are in yellow
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Heap used to improve algorithm

Selection sort
• Continually look for the smallest element
• The element currently being considered is in blue
• The current smallest element is in red
• Sorted elements are in yellow
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Heap used to improve algorithm

Selection sort
• Continually look for the smallest element

What is the runtime of selection sort?
How can we make it faster with a heap?

With a heap: O(n2) à O(n lg n)
• Insert all elements into a heap: n
• Extract each element: n * lg n
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Example : Event Manager

Uses a priority queue (synonym for Heap)

Example: simulation or game
• play sounds
• render animation
• detect collisions
• register input Probably the most important to get correct. But does it need to be the highest priority?

We can probably delay this without much trouble.
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Heap Implementation

Conceptually you should think of a Heap as a binary tree
But it is implemented using an array (why?)

Heap Property: for any given node x, 
1. key[x] ≤ key[x’s left child], and
2. key[x] ≤ key[x’s right child]

Where is the minimum key?

No pointer following
Fewer heap-allocations

No pointer storing

Key: 25
Data: U

Key: 12
Data: V

Key: 21
Data: W

Key: 67
Data: X

Key: 18
Data: Y

Key: 82
Data: Z
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Heap Implementation

Note: Heaps are not unique
You can have multiple different configurations that hold the same data
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parent_index = (node_index - 1) // 2

4

4 8

9 4 12 9

11 13

Value 4 4 8 9 4 12 9 11 13
Index 0 1 2 3 4 5 6 7 8

Parent

Level 0

Level 1

Level 2

Level 3

How do you calculate the 
index of a node’s parent?

- 0 1 2 2 3 310

0

1 2

3 4 5 6

7 8
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4

4 8

9 4 12 9

11 13

Value 4 4 8 9 4 12 9 11 13
Index 0 1 2 3 4 5 6 7 8

Parent - 0 0 1 1 2 2 3 3

Left Child
Right Child

Level 0

Level 1

Level 2

Level 3

How do you calculate the 
indices of a node’s children?

parent_index = (node_index - 1) // 2

left_child_index = 2 * node_index + 1

right_child_index = 2 * (node_index + 1)

1 3 9 11 13 15 1775

2 4 10 12 14 16 1886

0

1 2

3 4 5 6

7 8
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Exercise



4

4 8

9 4 12 9

11 13

Insert: 7
Where should it go?
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4

4 8

9 4 12 9

11 13

Insert: 7

4 4 8 9 4 12 9 11 13

Where should it go?

We don’t want gaps 
in the array. They 
signal the end of a 

search.
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4

4 8

9 4 12 9

11 13

Insert: 7

4 4 8 9 4 12 9 11 13 7

7

20



4

4 8

9 4 12 9

11 13

Insert: 10

4 4 8 9 4 12 9 11 13 7

7
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4

4 8

9 4 12 9

11 13

Insert: 10

4 4 8 9 4 12 9 11 13 7 10

7 10
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4

4 8

9 4 12 9

11 13

Insert: 5

4 4 8 9 4 12 9 11 13 7 10

7 10
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4

4 8

9 4 12 9

11 13

Insert: 5

4 4 8 9 4 12 9 11 13 7 10 5

7 10 5

parent_index = (node_index - 1) // 2
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4

4 8

9 4 12 9

11 13

Insert: 5

4 4 8 9 4 12 9 11 13 7 10 5

7 10 5

parent_index = (node_index - 1) // 2
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4

4 8

9 4 5 9

11 13

Insert: 5

4 4 8 9 4 5 9 11 13 7 10 12

7 10 12

parent_index = (node_index - 1) // 2
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4

4 8

9 4 5 9

11 13

Insert: 5

4 4 8 9 4 5 9 11 13 7 10 12

7 10 12

parent_index = (node_index - 1) // 2
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4

4 5

9 4 8 9

11 13

4 4 5 9 4 8 9 11 13 7 10 12

7 10 12

What is the 
running time of an 

insert?

This is sometimes 
called “Bubbling-Up”
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4

4 5

9 4 8 9

11 13

Extract-Min

4 4 5 9 4 8 9 11 13 7 10 12

7 10 12

What node do we 
put at the root in 

place of 4?
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4

4 5

9 4 8 9

11 13

Extract-Min

4 4 5 9 4 8 9 11 13 7 10 12

7 10 12

What node do we 
put at the root in 

place of 4?

What if we 
choose a 

child?

?
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4

4

5

9 4 8 9

11 13

Extract-Min

4 5 9 4 8 9 11 13 7 10 12

7 10 12

?
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4

4

5

9

4

8 9

11 13

Extract-Min

4 4 5 9 8 9 11 13 7 10 12

7 10 12

?
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4

4

5

9

4

8 9

11 13

Extract-Min

4 4 5 9 7 8 9 11 13 10 12

7

10 12?
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4

4 5

9 4 8 9

11 13

Extract-Min

4 4 5 9 4 8 9 11 13 7 10 12

7 10 12

What node do we put in place of 4?

We are 
guaranteed to not 
leave a gap if we 
choose the last 

node.34



12

4 5

9 4 8 9

11 13

Extract-Min

12 4 5 9 4 8 9 11 13 7 10

7 10

left_child_index = 2 * node_index + 1

left_child_index = 2 * (node_index + 1)
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12

4 5

9 4 8 9

11 13

Extract-Min

12 4 5 9 4 8 9 11 13 7 10

7 10

left_child_index = 2 * node_index + 1

left_child_index = 2 * (node_index + 1)

Do we swap with the 4 or the 5?
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4

12 5

9 4 8 9

11 13

Extract-Min

4 12 5 9 4 8 9 11 13 7 10

7 10

left_child_index = 2 * node_index + 1

left_child_index = 2 * (node_index + 1)

37



4

12 5

9 4 8 9

11 13

Extract-Min

4 12 5 9 4 8 9 11 13 7 10

7 10

left_child_index = 2 * node_index + 1

left_child_index = 2 * (node_index + 1)
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4

4 5

9 12 8 9

11 13

Extract-Min

4 4 5 9 12 8 9 11 13 7 10

7 10

left_child_index = 2 * node_index + 1

left_child_index = 2 * (node_index + 1)
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4

4 5

9 12 8 9

11 13

Extract-Min

4 4 5 9 12 8 9 11 13 7 10

7 10

left_child_index = 2 * node_index + 1

left_child_index = 2 * (node_index + 1)
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4

4 5

9 7 8 9

11 13

Extract-Min

4 4 5 9 7 8 9 11 13 12 10

12 10

left_child_index = 2 * node_index + 1

left_child_index = 2 * (node_index + 1)

Bubbling-Down

41



FUNCTION Dijkstra(G, start_vertex)
found = {}
lengths = {v: INFINITY FOR v IN G.vertices}

found.add(start_vertex)
lengths[start_vertex] = 0

WHILE found.length != G.vertices.length

FOR v IN found
FOR vOther, weight IN G.edges[v]

IF vOther NOT IN found

vOther_length = lengths[v] + weight
IF vOther_length < min_length

min_length = vOther_length

vMin = vOther
found.add(vMin)
lengths[vMin] = min_length

RETURN lengths

How many times does the 
outer loop run?

How many times do the inner 
two loops run?

What is the 
running time?

O(n)

O(m)
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FUNCTION Dijkstra(G, start_vertex)
found = {}
lengths = {v: INFINITY FOR v IN G.vertices}

found.add(start_vertex)
lengths[start_vertex] = 0

WHILE found.length != G.vertices.length

FOR v IN found
FOR vOther, weight IN G.edges[v]

IF vOther NOT IN found

vOther_length = lengths[v] + weight
IF vOther_length < min_length

min_length = vOther_length

vMin = vOther
found.add(vMin)
lengths[vMin] = min_length

RETURN lengths

What is the 
running time?

We can bring this 
down to O(m lg m) 

with a simple change.

State of the art of Dijkstra’s:
O(m + n lg n)

(uses Fibonacci heap)
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def dijkstras_heap(adjacency_list, start_vertex):
"""Dijkstra's Algorithm implemented with all vertices placed in a heap.

This version of Dijkstra's Algorithm has a running time of O(m lg m).
"""

n = len(adjacency_list)

path_lengths = {v: inf for v in adjacency_list}
predecessors = {v: None for v in adjacency_list}

path_lengths[start_vertex] = 0
predecessors[start_vertex] = None

found = set()
vertex_min_heap = [(path_lengths[start_vertex], start_vertex)]

while len(found) != n:
vfrom_length, vfrom = heappop(vertex_min_heap)
found.add(vfrom)

for vto, weight in adjacency_list[vfrom]:
path_length = vfrom_length + weight
if path_length < path_lengths[vto]:

path_lengths[vto] = path_length
predecessors[vto] = vfrom

heappush(vertex_min_heap, (path_lengths[vto], vto))

return path_lengths, predecessors

Not optimal but works 
very well in practice.
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while len(found) != n:
vfrom_length, vfrom = heappop(vertex_min_heap)
found.add(vfrom)

for vto, weight in adjacency_list[vfrom]:
path_length = vfrom_length + weight
if path_length < path_lengths[vto]:

path_lengths[vto] = path_length
predecessors[vto] = vfrom

heappush(vertex_min_heap, (path_lengths[vto], vto))

A

B C

D

EF4

9

3

2

3

7

5

2

8
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def print_path(end_vertex, predecessors):

path = [end_vertex]
pred = predecessors[end_vertex]

while pred is not None:

path.append(pred)
pred = predecessors[pred]

print(" -> ".join([str(v) for v in reversed(path)]))
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Dijkstra’s Algorithm Correctness

Theorem:
• Dijkstra’s algorithm will find the shortest path from the start vertex to 

every other vertex on any graph with non-negative weights.

Proof using a loop invariant. Loop predicate:
• At the start of each iteration of the while loop, the shortest path has 

been found for every vertex in the found set
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Initialization

• Initially, the found set is empty. 
So, the invariant is trivially true.

Loop predicate/invariant: At the start of 
each iteration of the while loop, the 
shortest path has been found for every 
vertex in the found set

while len(found) != n:
vfrom_length, vfrom = heappop(vertex_min_heap)
found.add(vfrom)

for vto, weight in adjacency_list[vfrom]:
path_length = vfrom_length + weight
if path_length < path_lengths[vto]:

path_lengths[vto] = path_length
predecessors[vto] = vfrom

heappush(vertex_min_heap,
(path_lengths[vto], vto))

…
found = set()
…
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Maintenance (1)

• Assume all previous iterations 
have produced the correct 
shortest path for all vertices in 
the found set.
• For purposes of a contradiction, 

assume that when a vertex u is 
added to the found set its path 
length is not optimal.
• At the time u is found we must 

have some path to u

Loop predicate/invariant: At the start of 
each iteration of the while loop, the 
shortest path has been found for every 
vertex in the found set

while len(found) != n:
vfrom_length, vfrom = heappop(vertex_min_heap)
found.add(vfrom)

for vto, weight in adjacency_list[vfrom]:
path_length = vfrom_length + weight
if path_length < path_lengths[vto]:

path_lengths[vto] = path_length
predecessors[vto] = vfrom

heappush(vertex_min_heap,
(path_lengths[vto], vto))
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Maintenance (1)

• Assume all previous iterations 
have produced the correct 
shortest path for all vertices in 
the found set.
• For purposes of a contradiction, 

assume that when a vertex u is 
added to the found set its path 
length is not optimal.
• At the time u is found we must 

have some path to u

Loop predicate/invariant: At the start of 
each iteration of the while loop, the 
shortest path has been found for every 
vertex in the found set

while len(found) != n:
vfrom_length, vfrom = heappop(vertex_min_heap)
found.add(vfrom)

for vto, weight in adjacency_list[vfrom]:
path_length = vfrom_length + weight
if path_length < path_lengths[vto]:

path_lengths[vto] = path_length
predecessors[vto] = vfrom

heappush(vertex_min_heap,
(path_lengths[vto], vto))
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Maintenance (1)

• For purposes of a contradiction, 
assume that when a vertex u is 
added to the found set its path 
length is not optimal.
• At the time u is found we must have 

some path to u
• To have a shorter path to u, it must 

go through some vertex k not in 
found.
• But since we only have positive 

edges, a shorter path going through 
k, means that k must have been 
chosen before u. Contradiction.

Loop predicate/invariant: At the start of 
each iteration of the while loop, the 
shortest path has been found for every 
vertex in the found set

while len(found) != n:
vfrom_length, vfrom = heappop(vertex_min_heap)
found.add(vfrom)

for vto, weight in adjacency_list[vfrom]:
path_length = vfrom_length + weight
if path_length < path_lengths[vto]:

path_lengths[vto] = path_length
predecessors[vto] = vfrom

heappush(vertex_min_heap,
(path_lengths[vto], vto))
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Termination

• The loop terminates when all 
vertices have been added to the 
found set.

• Given the loop invariant the 
shortest path to all vertices 
have been calculated.

Loop predicate/invariant: At the start of 
each iteration of the while loop, the 
shortest path has been found for every 
vertex in the found set

while len(found) != n:
vfrom_length, vfrom = heappop(vertex_min_heap)
found.add(vfrom)

for vto, weight in adjacency_list[vfrom]:
path_length = vfrom_length + weight
if path_length < path_lengths[vto]:

path_lengths[vto] = path_length
predecessors[vto] = vfrom

heappush(vertex_min_heap,
(path_lengths[vto], vto))

52


