Dijkstra's Algorithm
 https://cs.pomona.edu/classes/cs140/

path Algorithm

Dijkstra's Single-Source Shortest Path Algorithm

Outline

Topics and Learning Objectives

- Discuss graphs with edge weights
- Discuss shortest paths
- Discuss Dijkstra's algorithm including a proof

Exercise

- Dijkstra's Algorithm

Extra Resources

- Introduction to Algorithms, 3rd, chapter 24
- Algorithms Illuminated Part 2: Chapter 9

Dijkstra's
 Algorithm

Find the shortest path between a start vertex s and every other vertex in the graph G

Can halt the algorithm if you only want to find shortest path to a specific vertex (for example, a destination city)

Uses:

- Network routing
- Path planning
- Etc.

Dijkstra's
 Algorithm

Find the shortest path between a start vertex s and every other vertex in the graph G

Can halt the algorithm if you only want to find shortest path to a specific vertex (for example, a destination city)

Uses:

- Network routing
- Path planning
- Etc.

Dijkstra's Algorithm

Input

- A weighted graph $G=(V, E)$ and
- A source vertex s

Output

- for all v in \vee we output the length of the shortest path from $s \rightarrow \vee$
- you can also output the actual path, but we'll just worry about length for now

Assumptions

- A path exists from s to every other node (how can we check this property?)
- All edge weights are non-negative

What is the shortest path from S to all other vertices?

How did we do shortest path before?

- BFS
- How can we modify that process to work for graphs with weighted edges?

- Why would we not want to do that?

```
FUNCTION Dijkstra(G, start_vertex)
    found = {}
    lengths = {v: INFINITY FOR v IN G.vertices}
    found.add(start_vertex)
    lengths[start_vertex] = 0
    WHILE found.length != G.vertices.length
        FOR v IN found
        FOR vOther, weight IN G.edges[v]
            IF vOther NOT IN found
                vOther_length = lengths[v] + weight
                IF vOther_length < min_length
                min_length = vOther_length
                vMin = vOther
    RETURN lengths
WHILE found.length != G.vertices.length
FOR \(v\) IN found
FOR vOther, weight IN G.edges[v] IF vOther NOT IN found
vOther_length \(=\) lengths [V] + weight IF vOther_length < min_length min_length = vOther_length vMin = vOther
```

```
    found.add(vMin)
```

 found.add(vMin)
 lengths[vMin] = min_length
    ```
    lengths[vMin] = min_length
```

```
RETURN lengths
```

This is now a set instead of a dictionary

Dijkstra's greed criterion

Computed in previous iterations

found. add(vMin)
lengths[vMin] = min_length
RETURN lengths

```
FUNCTION Dijkstra(G, start_vertex)
    found = {}
    lengths = {v: INFINITY FOR v IN G.vertices}
    found.add(start_vertex)
    lengths[start_vertex] = 0
    WHILE found.length != G.vertices.length
        FOR v IN found
        FOR vOther, weight IN G.edges[v]
            IF vOther NOT IN found
            vOther_length = lengths[v] + weight
            IF vOther_length < min_length
                min_length = vOther_length
                vMin = vOther
    found.add(vMin)
    lengths[vMin] = min_length
    RETURN lengths
```


Iteration 1:

```
FUNCTION Dijkstra(G, start_vertex)
    found = {}
    lengths = {v: INFINITY FOR v IN G.vertices}
    found.add(start_vertex)
    lengths[start_vertex] = 0
    WHILE found.length != G.vertices.length
        FOR v IN found
        FOR vOther, weight IN G.edges[v]
            IF vOther NOT IN found
            vOther_length = lengths[v] + weight
            IF vOther_length < min_length
                min_length = vOther_length
                vMin = vOther
    found.add(vMin)
    lengths[vMin] = min_length
    RETURN lengths
WHILE found.length ! = G.vertices.length
FOR v IN found
FOR vOther, weight IN G.edges[v]
IF vOther NOT IN found
vOther_length = lengths[v] + weight IF vOther_length < min_length min_length = vOther_length vMin = vOther
found.add(vMin)
lengths[vMin] = min_length
RETURN lengths
```


Iteration 2:

Exercise

Dijkstra's Algorithm with negative edges

- How might you deal with negative edges?
- How about adding some value to every edge?

What is the shortest path from s to t?

Dijkstra's Algorithm with negative edges

- How might you deal with negative edges?
- How about adding some value to every edge?

What is the shortest path from s to t?

Dijkstra's Algorithm with negative edges

- How might you deal with negative edges?
- How about adding some value to every edge?

What is the shortest
path from s to t?

We would add a different amount to each path!

Dijkstra's Algorithm

-What have we done so far?

- We've only shown that it works for the given example.
- This is not enough to prove correctness.
- In general, examples are good for:
- Demonstration
- Contradictions
- They are not good for proving correctness.

Proof by Induction Cheat-sheet

Proof by induction that $P(n)$ holds for all n

1. $P(1)$ holds because <something about the code/problem>
2. Let's assume that $P(k)(w h e r e ~ k<n)$ holds.
3. $P(n)$ holds because of $P(k)$ and <something about the code>
4. Thus, by induction, $P(n)$ holds for all n

Correctness

Theorem for Dijkstra's algorithm:

For every graph with non-negative edge lengths, Dijkstra's algorithm computes all shortest path distances from start_vertex to every other vertex

Base Case:
-lengths[start_vertex] = 0

Correctness

Theorem for Dijkstra's algorithm:

For every graph with non-negative edge lengths, Dijkstra's algorithm computes all shortest path distances from start_vertex to every other vertex

Inductive Hypothesis:

- Assume all previous iterations produce correct shortest paths
- For all v in found, lengths [v] = shortest path length from start_vertex to v

```
FUNCTION Dijkstra(G, start_vertex)
    found = {}
    lengths = {v: INFINITY FOR v IN G.vertices}
    found.add(start_vertex)
    lengths[start_vertex] = 0
    WHILE found.length != G.vertices.length
        FOR v IN found
        FOR vOther, weight IN G.edges[v]
            IF vOther NOT IN found
            vOther_length = lengths[v] + weight
            IF vOther_length < min_length
                min_length = vOther_length
                vMin = vOther
    found.add(vMin)
    lengths[vMin] = min_length
    RETURN lengths
RETURN lengths
```

Proof by induction that $P(n)$ holds for all n

- $\mathrm{P}(1)$ holds because ...
- Let's assume that $\mathrm{P}(\mathrm{k})($ where $\mathrm{k}<\mathrm{n})$ holds.
- $P(n)$ holds because of $P(k)$ and ...
- Thus, by induction, $\mathrm{P}(\mathrm{n})$ holds for all n

Inductive Step (look at code)

Inductive Step

In the current iteration:

- We pick an edge (v^{*}, vMin) based on Dijkstra's greedy criterion
- add VMin to found
- Set the path length of v Min \rightarrow lengths[vMin] = lengths[v^{*}] + weight $\mathrm{v}_{\mathrm{v}^{*}, v M i n}$

What do we know about lengths[[${ }^{*}$]?
Our inductive hypothesis states that it is the minimal path length

- Optimal path to v^{*}, and we won't find a better path to vMin
How do we prove this? Loop Invariant

Inductive Step

In the current iteration:

- We pick an edge (v^{*}, vMin) based on Dijkstra's greedy criterion
- add vMin to found
- Set the path length of v Min \rightarrow lengths[vMin] = lengths[v^{*}] + weight $\mathrm{v}_{\mathrm{v}^{*}, v M i n}$

What do we know about lengths[[${ }^{*}$]?
Our inductive hypothesis states that it is the minimal path length

- Optimal path to v^{*}, and we won't find a better path to vMin
How do we prove this? Loop Invariant

By our inductive hypothesis, our theorem for Dijkstra's is correct

Correctness

> V - found
some positive path length

Dijkstra's says that this is the best available path.

Correctness

found

V-found
some positive path length
some positive path length

Correctness

How do we know that the path from v^{*} to $v M i n$ is better than the path from v^{*} to y ?

Both include the path from s to v^{*}, and Dijkstra's Algorithm always picks the minimal path length.

Correctness

$$
\text { found } \quad V \text {-found }
$$

How do we know that the path from v^{*} to y to $v M i n$ is not even better than the path from v^{*} to vMin ?

Dijkstra's Algorithm only operates on graphs with positive edge weights. Thus, this new path must be greater than or equal to the ($\mathrm{v}^{*}, \mathrm{vMin}$) edge.

Correctness

Correctness

 path length
found
ome positive path length

V - found
some positive path length

How do we know that the path from
x to y to $v M i n$ is not even better than the path from v^{*} to vMin ?

Not taking the shortest edge. We are taking the shortest path!

Sometimes the the shortest edge is on the shortest path.

Why doesn't Dijkstra's work on graphs with negative edges?

Correctness (summary)

- Given our assumption that we do not have negative edges
- And our inductive hypothesis that our path to v^{*} is the shortest
- And our analysis of Dijkstra's greedy criterion
- We have shown that
lengths[vMin] = lengths[v^{*}] + weight $_{v^{*}, v \text { Min }^{\prime}}$ is the best available path length

```
FUNCTION Dijkstra(G, start_vertex)
    found = {}
    lengths = {v: INFINITY FOR v IN G.vertices}
found.add(start_vertex)
lengths[start_vertex] = 0
WHILE found.length != G.vertices.length
FOR v IN found
FOR vOther, weight IN G.edges[v]
IF vOther NOT IN found
vOther_length = lengths[v] + weight
IF vOther_length < min_length
min_length = vOther_length
vMin = vOther
found.add(vMin)
lengths[vMin] = min_length
RETURN lengths
```


What is the running time?

```
FUNCTION Dijkstra(G, start_vertex)
    found = {}
    lengths = {v: INFINITY FOR v IN G.vertices}
```


What is the running time?

found.add(start_vertex)
lengths[start_vertex] = 0
WHILE found.length ! = G.vertices.length \downarrow
FOR v IN found
FOR vOther, weight IN G.edges[v]
IF vOther NOT IN found
vOther_length = lengths[v] + weight IF vOther_length < min_length min_length = vOther_length vMin = vOther
found.add(vMin)
lengths[vMin] = min_length
RETURN lengths
How many times does the
outer loop run?

```
O(n)
```

O(n)
~
How many times do the inner
How many times do the inner
two loops run?
two loops run?
O(m)
lu

```
```

FUNCTION Dijkstra(G, start_vertex)
found = {}
lengths = {v: INFINITY FOR v IN G.vertices}

```

\section*{What is the running time?}
found.add(start_vertex)
lengths[start_vertex] = 0
WHILE found.length ! = G.vertices.length \(\downarrow\)
FOR \(v\) IN found
FOR vOther, weight IN G.edges[v]
IF vOther NOT IN found
vOther_length = lengths[v] + weight IF vOther_length < min_length min_length = vOther_length vMin = vOther
found.add(vMin)
lengths[vMin] = min_length
RETURN lengths

How many times does the
outer loop run?
\(\mathrm{O}(\mathrm{n})\)

How many times do the inner two loops run?```

