Kosaraju’s Algorithm for
Strongly Connected
Components

https://cs.pomona.edu/classes/cs140/

https://cs.pomona.edu/classes/cs140/

Outline

* Review topological orderings
* Discuss strongly connected components

* Cover Kosaraju’s Algorithm

* Work through Kosaraju’s Algorithm

Extra Resources

* Introduction to Algorithms, 3rd, chapter 22
* Algorithms llluminated Part 2: Chapter 8

Topological Orderings

Definition: a topological ordering of a directed acyclic graph is a
labelling f of the graph’s vertices such that:

1. The f-values are of the set {1, 2, ..., n}
2. For an edge (u, v) of G, f(u) < f(v)

Solve with DFS

FUNCTION TopologicalOrdering(G) FUNCTION DFSTopological(G, v, found, f, fValues)
found = {v: FALSE FOR v IN G.vertices} found[v] = TRUE
fValues = {v: INFINITY FOR v IN G.vertices} FOR vOther IN G.edges|[V]
f = G.vertices.length IF found|[vOther] == FALSE
FOR v IN G.vertices DFSTopological(G, vOther, found, f, fValues)
IF found[v] == FALSE fValues[v] = f
DFSTopological(G, v, found, f, fValues) f=Ff-1

RETURN fValues

Strongly Connected Components

* Topological orderings are useful in their own right,

but they also let us calculate the
of a graph
° A of a graph is strongly connected if we

can find a path from any vertex to any other vertex
* This is a concept for directed graphs only

* (just connected components for undirected graphs)

Why are SCCs useful?

What are the strongly connected components of this graph?

Can we use DFS?
What does a DFS do?

* Finds everything that is findable
* Does not visit any vertex more than once

So, what can we find from each of the different nodes?

What if we start DFS here? “ LS

R ¢ What if we start DFS here?

“‘ll.. “‘ll...
®
R L 2
)
4 .
: "
o u
B m
= [
|) |
L ..
* "
L

What if we start DFS here?

11

Meta Graph

Meta graph sink

12

Kosaraju

Computes the SCCs in O(m + n) time (linear!)
1. Create areverse version of the G called

13

14

Kosaraju

Computes the SCCs in O(m + n) time (linear!)
1. Create areverse version of the G called

2. RunKosarajulLabels on

Compute a topological order of the meta graph

3. Create a relabeled version of the G called G relabeled

4. Run KosarajulLeaderson G relabeled

15

FUNCTION Kosaraju(G)
G _reversed = reverse_graph(G)
new labels = KosarajuLabels(G reversed)

G _relabeled = relabel graph(G, new labels)
leaders = KosarajulLeaders(G_relabeled)

RETURN leaders

16

FUNCTION Kosaraju(G)
G_reversed = reverse_graph(G)
new_labels = KosarajulLabels(G_reversed)

G_relabeled = relabel_graph(G, new_labels)
leaders = KosarajulLeaders(G_relabeled)

RETURN leaders

FUNCTION KosarajulLabels(G)
found = {v: FALSE FOR v IN G.vertices}
label = ©
labels = {v: NONE FOR v IN G.vertices}

FOR v IN G.vertices.reverse order
IF found[v] == FALSE
DFSLabels(G, v, found, label, labels)

RETURN 1labels

FUNCTION DFSLabels(G, v, found, label, labels)
found[v] = TRUE
FOR vOther IN G.edges[V]
IF found[vOther] == FALSE
DFSLabels(G, vOther, found, label, labels)
label = label + 1
labels[v]| = label

17

FUNCTION Kosaraju(G)
G_reversed = reverse_graph(G)
new_labels = KosarajulLabels(G_reversed)

G_relabeled = relabel graph(G, new_labels)
leaders = KosarajulLeaders(G_relabeled)

RETURN leaders

FUNCTION KosarajulLeaders(G)
found = {v: FALSE FOR v IN G.vertices}
leaders = {v: NONE FOR v IN G.vertices}

FOR v IN G.vertices.reverse order
IF found[v] == FALSE
leader = v
DFSLeaders(G, v, found, leader, leaders)

RETURN leaders

FUNCTION DFSLeaders(G, v, found, leader, leaders)
found[v] = TRUE
leaders[v] = leader
FOR vOther IN G.edges[V]
IF found[vOther] == FALSE
DFSLeaders(G, vOther, found, leader, leaders)

18

FUNCTION KosarajulLabels(G)
found = {v: FALSE FOR v IN G.vertices}
label = ©

labels = {v: NONE FOR v IN G.vertices}

FOR v IN G.vertices.reverse_order
IF found[v] == FALSE
DFSLabels(G, v, found, label, labels)

RETURN labels

FUNCTION DFSLabels(G, v, found, label, labels)
found[v] = TRUE
FOR vOther IN G.edges[V]
IF found[vOther] == FALSE

DFSLabels(G, vOther, found, label, labels)

label = label + 1
labels[v] = label

FUNCTION KosarajulLeaders(G)
found = {v: FALSE FOR v IN G.vertices}
leaders = {v: NONE FOR v IN G.vertices}

FOR v IN G.vertices.reverse_order
IF found[v] == FALSE
leader = v
DFSLeaders(G, v, found, leader, leaders)

RETURN leaders

FUNCTION DFSLeaders(G, v, found, leader, leaders)
found[v] = TRUE
leaders|[v] = leader
FOR vOther IN G.edges|[V]
IF found[vOther] == FALSE

DFSLeaders(G, vOther, found, leader, leaders)

These are typically implemented in a single function

19

FUNCTION KosarajulLabels(G) FUNCTION KosarajulLeaders(G)
found = {v: FALSE FOR v IN G.vertices} found = {v: FALSE FOR v IN G.vertices}
label = © leaders = {v: NONE FOR v IN G.vertices}
labels = {v: NONE FOR v IN G.vertices}

FOR v IN G.vertices.reverse_order

FOR v IN G.vertices.reverse_order IF found[v] == FALSE
IF found[v] == FALSE leader = v
DFSLabels(G, v, found, label, labels) DFSLeaders(G, v, found, leader, leaders)
RETURN labels RETURN leaders
FUNCTION DFSLabels(G, v, found, label, labels) FUNCTION DFSLeaders(G, v, found, leader, leaders)
found[v] = TRUE found[v] = TRUE
FOR vOther IN G.edges[V] leaders|[v] = leader
IF found[vOther] == FALSE FOR vOther IN G.edges|[V]
DFSLabels(G, vOther, found, label, labels) IF found[vOther] == FALSE
label = label + 1 DFSLeaders(G, vOther, found, leader, leaders)

labels[v] = label

These are typically implemented in a single function

20

FUNCTION KosarajulLabels(G) FUNCTION KosarajulLeaders(G)
found = {v: FALSE FOR v IN G.vertices} found = {v: FALSE FOR v IN G.vertices}

label = © eaders = {v: NONE FOR v IN G.vertices}
labels = {v: NONE FOR v IN G.vertices}

FOR v IN G.vertices.reverse_order

FOR v IN G.vertices.reverse_order IF found[v] == FALSE
IF found[v] == FALSE4#’#’#’#’#’#,#,#,#.#.#.ﬂ.-—-—'—-'1eader =V
DFSLabels(G, v, found, label, labels), DFSLeaders(G, v, found, leader, leaders)
RETURN labels RETURN leaders
FUNCTION DFSLabels(G, v, found, label, labelsf FUNCTION DFSLeaders(G, v, found, leader, leaders)
found[v] = TRUE found[v] = TRUE
FOR vOther IN G.edges[Vv] leaders|[v] = leader
IF found[vOther] == FALSE FOR vOther IN G.edges|[V]
DFSLabels(G, vOther, found, label, labels) IF found[vOther] == FALSE
label = label + 1 DFSLeaders(G, vOther, found, leader, leaders)

labels[v] = label

These are typically implemented in a single function

21

FUNCTION KosarajuLoop(G)
found = {v: FALSE FOR v IN G.vertices}
label = 0
labels = {v: NONE FOR v IN G.vertices}
leaders = {v: NONE FOR v IN G.vertices}

FOR v IN G.vertices.reverse_order
IF found[v] == FALSE
leader = v
KosarajuDFS(G, v, found, label, labels, leader, leaders)

RETURN labels, leaders

FUNCTION KosarajuDFS(G, v, found, label, labels, leader, leaders)
found[v] = TRUE
leaders[v] = leader
FOR vOther IN G.edges[V]
IF found[vOther] == FALSE
KosarajuDFS(G, v, found, label, labels, leader, leaders)
label = label + 1
labels[v] = label

FUNCTION Kosaraju(G)
G _reversed = reverse_graph(G)

new_labels = Kosarajull Bl (G_reversed)

G _relabeled = relabel graph(G, new labels)
leaders = Kosaraju (G_relabeled)

RETURN leaders

23

FUNCTION Kosaraju(G)
G _reversed = reverse_graph(G)
new labels, = KosarajuLoop(G_reversed)

G _relabeled = relabel graph(G, new labels)
, leaders = KosarajuLoop(G relabeled)

RETURN leaders

24

Kosaraju

Computes the SCCs in O(m + n) time (linear!)
1. Create areverse version of the G called

2. Run KosarajulLoop on

Compute a topological order of the meta graph

3. Create a relabeled version of the G called G relabeled

4. Run KosarajuLoopon G relabeled

26

FUNCTION Kosaraju(G)
G _reversed = reverse_graph(G)
new labels, @ = KosarajuLoop(G_reversed)

G _relabeled = relabel graph(G, new labels)
_, leaders = KosarajuLoop(G relabeled)

RETURN leaders Where do we want to start
DFS if we are looking for SCCs?

27

FUNCTION Kosaraju(G)

new labels, @ = KosarajuLoop(G_reversed)

G _relabeled = relabel graph(G, new labels)
_, leaders = KosarajuLoop(G relabeled)

RETURN leaders Where do we want to start
DFS if we are looking for SCCs?

28

FUNCTION Kosaraju(G)
G _reversed = reverse_graph(G)

G _relabeled = relabel graph(G, new labels)
_, leaders = KosarajuLoop(G relabeled)

RETURN leaders Where do we want to start
DFS if we are looking for SCCs?

G reversed

29

FUNCTION KosarajuLoop(G)

found = {v: FALSE FOR v IN G.vertices}
(%]

label =

labels = {v: NONE FOR v IN G.vertices}

FOR v IN G.vertices.reverse_ order

IF found[v] == FALSE
KosarajuDFS(...)

RETURN labels

FUNCTION KosarajuDFS(..)
found[v] = TRUE

FOR vOther IN G.edges[V]
IF found[vOther] == FALSE
KosarajuDFS(..)
label = label + 1
labels[v] = label

lgnore leaders the first pass
lgnore labels the second pass

31

Sink SCCin
Meta Graph

G reversed

G_relabeled

32

FUNCTION Kosaraju(G)
G _reversed = reverse_graph(G)
new labels, = KosarajulLoop(G_reversed)

G _relabeled = relabel graph(G, new_labels)

RETURN leaders

G_relabeled

33

FUNCTION KosarajuLoop(G)
found = {v: FALSE FOR v IN G.vertices}

leaders = {v: NONE FOR v IN G.vertices}

FOR v IN G.vertices.reverse_ order
IF found[v] == FALSE
leader = v
KosarajuDFS(...)

RETURN labels, leaders

FUNCTION KosarajuDFS(..)
found[v] = TRUE
leaders[v] = leader
FOR vOther IN G.edges[V]
IF found[vOther] == FALSE
KosarajuDFS(..)

lgnore leaders the first pass
lgnore labels the second pass

35

Sink SCCin
Meta Graph

G reversed

G_relabeled

FUNCTION Kosaraju(G)
G _reversed = reverse_graph(G)
new labels, @ = KosarajuLoop(G_reversed)

G _relabeled = relabel graph(G, new labels)
_, leaders = KosarajuLoop(G relabeled)

RETURN leaders
G_relabeled

37

Exercise

FUNCTION KosarajuLoop(G)

found = {v: FALSE FOR v IN G.vertices}
label = ©

labels = {v: NONE FOR v IN G.vertices}
leaders = {v: NONE FOR v IN G.vertices}

FOR v IN G.vertices.reverse_order
IF found[v] == FALSE
leader = v

KosarajuDFS(G, v, found, label, labels, leader, leaders)

RETURN labels, leaders

FUNCTION Kosaraju(G)
G_reversed = reverse_graph(G)
new_labels, @ = KosarajuLoop(G_reversed)

G_relabeled = relabel graph(G, new labels)
_, leaders = KosarajuLoop(G_relabeled)

RETURN leaders

FUNCTION KosarajuDFS(G, v, found, label, labels, leader, leaders)

found[v] = TRUE
leaders[v] = leader
FOR vOther IN G.edges|[V]
IF found[vOther] == FALSE

KosarajuDFS(G, v, found, label, labels, leader, leaders)

label = label + 1
labels[v] = label

Why does this work?

* Does this work for all graphs, or just this example?
* The SCCs of G create an acyclic “meta-graph”

* For the “meta-graph”
* Vertices correspond to the SCCs
* Edges correspond to paths among the SCCs

SCC2

SCC1

41

42

How do we know that the SCC based meta-
graph is acyclic?

Original Graph (Random Labels) Reverse Graph (Random Labels)

SCC1 SCC2 SCC1 SCC2

Consider the two adjacent SCCs in the meta-graph above

Now consider the re-labeling found from the reverse graph | FUNCTION KosarajuDFS(.)
found[v] = TRUE

leaders[v] = leader

Let f(v) = the re-labeling resulting from FOR vOther IN G.edges[v]

KosarajuLoop(G_reversed) IF ;Ound [\{0‘;222]) == FALSE
osaraju

label = label + 1
Thenmax[f(.) in SCC1] < max[f(.) in SCC2] labels[v] = label

Corollary: the maximum f-value must lie in a “sink SCC” of
the original graph

45

47

Max f-value of SCC2 = F2
“ .‘

'S
Q “
o) a
| o
| |
° !
¢ A4 @ Max f-value of SCC4 = F4
Max f-value of SCC1=F1 ¢ * o® MViaxhvalueo
Q N PY L/ am®
.
a
[|
N
I
S

*
» ® Maxfvalue of SCC3 = F3

Then F1 <{F2, F3} < F4

48

Max f-value of SCC2 = F2
|
¢ ®

L 4
N
|
n
.

2
2

Max f-value of SCC1=F1 ¢ ,
N

Then F1<{F2, F3} < F4

What would happen if SCC4 had a link back to SCC3?

49

Original Graph Reverse Graph

Proof of

sccl scc2 sccl SCC2
Case 1: consider the case when the first vertex FUNCTION KosarajuDFS(..)
that we explore is in SCC1 found[v] = TRUE

leaders[v] = leader

* Then all SCC1 is explored before SCC2 F°RIZ°§2§2dfcoﬁgﬁﬂ?eivgmE

KosarajuDFS(..)

* Therefore, all f-values in SCC1 are less than all f-values label = label + 1
in SCC2 labels[v] = label

* So, in the original graph we will start in SCC2 (the sink)

50

Original Graph

Proof of
emma

SCC1 SCC2

Case 2: consider the case when the first vertex that we explore is in SCC2

All other vertices in SSC2 are explored before vertex |

All vertices in SSC1 are explored before vertex j

Therefore, all f-values in SSC1 and SSC2 are less than the f-value of vertex |

So, in the original graph we will start at vertex jin SSC2 (the sink)

Reverse Graph

SCC1 SCC2

FUNCTION KosarajuDFS(..)
found[v] = TRUE
leaders[v] = leader
FOR vOther IN G.edges|[V]
IF found[vOther] == FALSE
KosarajuDFS(..)
label = label + 1
labels[v] = label

51

What does this mean?

* We'll start the second KosarajuLoop at an “SCC sink”

* That sink will then be removed (by marking all vertices in the SCC as
explored) and we’ll next move to the newly created sink

e And so on

Kosaraju’s Algorithm Summary

Computes the SCCs in O(m + n) time (linear!)
1. Create areverse version of the G called

2. Run KosarajulLoop on
* Create a topological ordering on the meta graph

3. Create arelabeled version of the G called

4. Run KosarajuLoop on
* Find all nodes with the same “leader”

53

