
Depth First Search and
Topological Orderings

https://cs.pomona.edu/classes/cs140/

https://cs.pomona.edu/classes/cs140/

Outline

Topics and Learning Objectives
• Discuss depth first search for graphs
• Discuss topological orderings

Exercise
• DFS run through

2

Depth-First Search

• Explore more aggressively, and
• Backtrack when needed
• Linear time algorithm (again O(m + n))

• Computes topological ordering (we’ll discuss this today)

3

FUNCTION DFS(G, start_vertex)
found = {v: FALSE FOR v IN G.vertices}
DFSRecursion(G, start_vertex, found)
RETURN found

FUNCTION DFSRecursion(G, v, found)
found[v] = TRUE
FOR vOther IN G.edges[v]

IF found[vOther] == FALSE
DFSRecursion(G, vOther, found)

Why is this non-
recursive function

necessary?

4

FUNCTION DFS(G, start_vertex)
found = {v: FALSE FOR v IN G.vertices}
DFSRecursion(G, start_vertex, found)
RETURN found

FUNCTION DFSRecursion(G, v, found)
found[v] = TRUE
FOR vOther IN G.edges[v]

IF found[vOther] == FALSE
DFSRecursion(G, vOther, found)

Why is this non-
recursive function

necessary?

FUNCTION BFS(G, start_vertex)
found = {v: FALSE FOR v IN G.vertices}
found[start_vertex] = TRUE
visit_queue = [start_vertex]

WHILE visit_queue.length != 0
vFound = visit_queue.pop()
FOR vOther IN G.edges[vFound]

IF found[vOther] == FALSE
found[vOther] = TRUE
visit_queue.add(vOther)

RETURN found
5

FUNCTION DFS(G, start_vertex)
found = {v: FALSE FOR v IN G.vertices}
DFSRecursion(G, start_vertex, found)
RETURN found

FUNCTION DFSRecursion(G, v, found)
found[v] = TRUE
FOR vOther IN G.edges[v]

IF found[vOther] == FALSE
DFSRecursion(G, vOther, found)

What kind of data
structure would we need
for an iterative version?

Why is this non-
recursive function

necessary?

6

s

a

b

c

e

d

FUNCTION DFSRecursion(G, v, found)
found[v] = TRUE
FOR vOther IN G.edges[v]

IF found[vOther] == FALSE
DFSRecursion(G, vOther, found)

Given a tie, visit edges are in alphabetical order

FUNCTION DFS(G, start_vertex)
found = {v: FALSE FOR v in G.vertices}
DFSRecursion(G, start_vertex, found)
RETURN found

7

s

a

b

c

e

d

FUNCTION DFSRecursion(G, v, found)
found[v] = TRUE
FOR vOther IN G.edges[v]

IF found[vOther] == FALSE
DFSRecursion(G, vOther, found)

Given a tie, visit edges are in alphabetical order

Exercise

8

Running Time

FUNCTION DFS(G, start_vertex)
found = {v: FALSE FOR v IN G.vertices}
DFSRecursion(G, start_vertex, found)
RETURN found

FUNCTION DFSRecursion(G, v, found)
found[v] = TRUE
FOR vOther IN G.edges[v]

IF found[vOther] == FALSE
DFSRecursion(G, vOther, found)

What is the depth of the recursion tree?

10

11

An example use case for DFS

12

Topological Orderings

Definition: a topological ordering of a directed acyclic graph is a
labelling of the graph’s vertices with “f-values” such that:

1. The f-values are of the set {1, 2, …, n}
2. For an edge (u, v) of G, f(u) < f(v)

13

Topological Orderings

s

v

w

t
1

2

3

4

Or 3

Or 2

1. The f-values are of the set {1, 2, …, n}
2. For an edge (u, v) of G, f(u) < f(v)

14

Topological Orderings

s v w t

s w v t

15

Topological Orderings

Can be used to graph a sequence of tasks while respecting all
precedence constraints
• For example, a flow chart for your CS degrees
• I read a funding proposal where they were using topological orderings

to schedule robot tasks for building a space station.

Requires the graph to be acyclic.
• Why?

16

Topological Orderings

s

v

w

t
1

2

3

4

Or 3

Or 2

1. The f-values are of the set {1, 2, …, n}
2. For an edge (u, v) of G, f(u) < f(v)

What if we add a cycle?

17

How to Compute Topological Orderings?

Straightforward solution:
1. Let v be any sink of G
2. Set f(v) = |V|
3. Recursively conduct the same procedure on G – {v}

18

s

v

w

t

1. Let v be any sink of G
2. Set f(v) = |V|
3. Recursively conduct the same procedure on G – {v}

19

s

v

w

t

1. Let v be any sink of G
2. Set f(v) = |V|
3. Recursively conduct the same procedure on G – {v}

4

20

s

v

w

t

1. Let v be any sink of G
2. Set f(v) = |V|
3. Recursively conduct the same procedure on G – {v}

4

21

s

v

w

t

1. Let v be any sink of G
2. Set f(v) = |V|
3. Recursively conduct the same procedure on G – {v}

4

3

22

s

v

w

t

1. Let v be any sink of G
2. Set f(v) = |V|
3. Recursively conduct the same procedure on G – {v}

4

3

23

s

v

w

t

1. Let v be any sink of G
2. Set f(v) = |V|
3. Recursively conduct the same procedure on G – {v}

4

3

2

24

s

v

w

t

1. Let v be any sink of G
2. Set f(v) = |V|
3. Recursively conduct the same procedure on G – {v}

4

3

2

25

s

v

w

t

1. Let v be any sink of G
2. Set f(v) = |V|
3. Recursively conduct the same procedure on G – {v}

4

3

2

1

26

How to Compute Topological Orderings?

Straightforward solution:
1. Let v be any sink of G
2. Set f(v) = |V|
3. Recursively conduct the same procedure on G – {v}

How can we do this with our DFS algorithm
if we don’t know which nodes are sinks?

27

s

i

j

k

h

m

Which nodes are
sinks?

n

28

s

i

j

k

h

m

Which nodes are
sinks?

How can you find
one using DFS?

n

Do we need to
remove it?

Does a single call to
DFS label all nodes?

29

Solve with DFS

FUNCTION TopologicalOrdering(G)

found = {v: FALSE FOR v IN G.vertices}

fValues = {v: INFINITY FOR v IN G.vertices}

f = G.vertices.length

FOR v IN G.vertices

IF found[v] == FALSE

DFSTopological(G, v, found, f, fValues)

RETURN fValues

FUNCTION DFSTopological(G, v, found, f, fValues)

found[v] = TRUE

FOR vOther IN G.edges[v]

IF found[vOther] == FALSE

DFSTopological(G, vOther, found, f, fValues)

fValues[v] = f

f = f - 1

30

s

i

j

k

h

m
n

FUNCTION TopologicalOrdering(G)

found = {v: FALSE FOR v IN G.vertices}

fValues = {v: INFINITY FOR v IN G.vertices}

f = G.vertices.length

FOR v IN G.vertices

IF found[v] == FALSE

DFSTopological(G, v, found, f, fValues)

RETURN fValues

FUNCTION DFSTopological(G, v, found, f, fValues)

found[v] = TRUE

FOR vOther IN G.edges[v]

IF found[vOther] == FALSE

DFSTopological(G, vOther, found, f, fValues)

fValues[v] = f

f = f - 1 31

Running Time

Again, this algorithm is O(n + m)

We only consider each vertex once, and

We only consider each edge once (twice if you consider backtracking)

32

Correctness of DFS Topological Ordering

We need to show that for any (u, v) that f(u) < f(v)

1. Consider the case when u is visited first
1. We recursively look at all paths from u and label

those vertices first
2. So, f(u) must be less than f(v)

2. Now consider the case when v is visited first
1. There is no path back to u, so v gets labeled before

we explore u
2. Thus, f(u) must be less than f(v)

u v

How do we know that there
is no path from v to u?

FUNCTION DFSTopological(G, v, found,
f, fValues)

found[v] = TRUE
FOR vOther IN G.edges[v]

IF found[vOther] == FALSE
DFSTopological(G, vOther,

found, f, fValues)
fValues[v] = f
f = f - 1

33

Topological Ordering

• We can use DFS to find a topological ordering since a DFS will search
as far as it can until it needs to backtrack

• It only needs to backtrack when it finds a sink

• Sinks are the first values that must be labeled

34

35

