# Depth First Search and Topological Orderings

https://cs.pomona.edu/classes/cs140/

### Outline

#### **Topics and Learning Objectives**

- Discuss depth first search for graphs
- Discuss topological orderings

#### **Exercise**

• DFS run through

### Depth-First Search

- Explore more aggressively, and
- Backtrack when needed
- Linear time algorithm (again O(m + n))
- Computes topological ordering (we'll discuss this today)

```
FUNCTION DFS(G, start_vertex)
found = {v: FALSE FOR v IN G.vertices}
DFSRecursion(G, start_vertex, found)
RETURN found
```

Why is this nonrecursive function necessary?

```
FUNCTION DFSRecursion(G, v, found
found[v] = TRUE
FOR vOther IN G.edges[v]
IF found[vOther] == FALSE
DFSRecursion(G, vOther, found)
```



```
FUNCTION DFS(G, start_vertex)
found = {v: FALSE FOR v IN G.vertices}
DFSRecursion(G, start_vertex, found)
RETURN found
```

Why is this nonrecursive function necessary?

```
FUNCTION DFSRecursion(G, v, found)
found[v] = TRUE
FOR vOther IN G.edges[v]
IF found[vOther] == FALSE
DFSRecursion(G, vOther, found)
```

What kind of data structure would we need for an iterative version?



Given a tie, visit edges are in alphabetical order



Running Time M= 5 M= 9  $\leq M \leq \binom{z}{z} = O(n^z)$ n(n-1)FUNCTION DFS (G, start vertex found = {v: FALSE FOR v IN G.vertices} DFSRecursion(G, start\_vertex, found) **RETURN** found **FUNCTION** DFSRecursion(G, v, found) found[v] = TRUE\_\_\_\_ FOR vOther IN G.edges[v] What is the depth of the recursion tree? IF found[vOther] == FALSE DFSRecursion(G, vOther, found)





 $= O(h^2)$ 



## An example use case for DFS

### **Topological Orderings** Definition: a topological ordering of a directed acyclic graph is a labelling of the graph's vertices with "f-values" such that:

The f-values are of the set {1, 2, ..., n}
For an edge (u, v) of G, f(u) < f(v)</li>









#### Topological Orderings

Can be used to graph a sequence of tasks while respecting all precedence constraints

- For example, a flow chart for your CS degrees
- I read a funding proposal where they were using topological orderings to schedule robot tasks for building a space station.

Requires the graph to be acyclic.

• Why?

# Topological Orderings1. The f-values are of the set {1, 2, ..., n}2. For an edge (u, v) of G, f(u) < f(v)</td>



### How to Compute Topological Orderings?

Straightforward solution:

- 1. Let v be any sink of G
- 2. Set f(∨) = |∨| ⊆ ∩
- 3. Recursively conduct the same procedure on  $G \{v\}$

- 1. Let v be any sink of G
- 2. Set f(v) = |V|
- 3. Recursively conduct the same procedure on  $G \{v\}$





- 1. Let v be any sink of G
- 2. Set f(v) = |V|
- 3. Recursively conduct the same procedure on  $G \{v\}$

![](_page_19_Figure_3.jpeg)

- 1. Let v be any sink of G
- 2. Set f(v) = |V|
- 3. Recursively conduct the same procedure on  $G \{v\}$

![](_page_20_Figure_3.jpeg)

- 1. Let v be any sink of G
- 2. Set f(v) = |V|
- 3. Recursively conduct the same procedure on  $G \{v\}$

![](_page_21_Figure_3.jpeg)

- 1. Let v be any sink of G
- 2. Set f(v) = |V|
- 3. Recursively conduct the same procedure on  $G \{v\}$

![](_page_22_Figure_3.jpeg)

- 1. Let v be any sink of G
- 2. Set f(v) = |V|
- 3. Recursively conduct the same procedure on  $G \{v\}$

![](_page_23_Figure_3.jpeg)

- 1. Let v be any sink of G
- 2. Set f(v) = |V|
- 3. Recursively conduct the same procedure on  $G \{v\}$

![](_page_24_Figure_3.jpeg)

### How to Compute Topological Orderings?

Straightforward solution:

- 1. Let v be any sink of G
- 2. Set f(v) = |V|
- 3. Recursively conduct the same procedure on  $G \{v\}$

How can we do this with our DFS algorithm if we don't know which nodes are sinks?

![](_page_26_Figure_0.jpeg)

![](_page_27_Figure_0.jpeg)

### Solve with DFS

```
FUNCTION TopologicalOrdering(G)
                                                           FUNCTION DFSTopological(G, v, found, f, fValues)
   found = {v: FALSE FOR v IN G.vertices}
                                                              found[v] = TRUE
   fValues = {v: INFINITY FOR v IN G.vertices}
                                                              FOR vOther IN G.edges[v]
   f = G.vertices.length
                                                                 IF found[vOther] == FALSE
                                                                    DFSTopological(G, vOther, found, f, fValues)
   FOR v IN G.vertices
                                                              fValues[v] = f
      IF found[v] == FALSE
         DFSTopological(G, v, found, f, fValues)
                                                              f = f - 1
   RETURN fValues
```

```
FUNCTION TopologicalOrdering(G)
  found \neq {v: FALSE FOR v IN G.vertices}
  fValues = {v: INFINITY FOR y IN G.vertices}
                                            S
                            65477
  f = G.vertices.length = A
                                                                       m
->FOR v IN G.vertices
     IF found[v] == FALSE
                                               DFST (i
        DFSTopological(G, v, found, f, fValues)
  RETURN fValues
                                                    DFST(K) C
                                                        DFST(m)E
FUNCTION DFSTopologicaíl(G, v, found, f, fValues)
  found[v] = TRUE
  FOR vOther IN G.edges[v]
     IF found[vOther] == FALSE
       DFSTopological(G, vOther, found, f, fValues) DFST (S)
                                                    DFST()
  fValues[v] = f
  f = f - 1
                                                                              31
```

### Running Time

Again, this algorithm is O(n + m)

We only consider each vertex once, and

We only consider each edge once (twice if you consider backtracking)

### Correctness of DFS Topological Ordering

We need to show that for any (u, v) that f(u) < f(v)

- 1. Consider the case when **u** is visited first
  - 1. We recursively look at all paths from u and label those vertices first
  - 2. So, f(u) must be less than f(v)
- 2. Now consider the case when v is visited first
  - 1. There is **no path back** to **u**, so **v** gets labeled before we explore **u**
  - 2. Thus, f(u) must be less than f(v)

![](_page_31_Picture_8.jpeg)

How do we know that there is no path from v to u?

### **Topological Ordering**

- We can use DFS to find a topological ordering since a DFS will search as far as it can until it needs to backtrack
- It only needs to backtrack when it finds a sink
- Sinks are the first values that must be labeled

![](_page_33_Picture_0.jpeg)

## $E[X_{2}D] = E[X_{1}] + E[X_{2}]$ 3.5 + 3.5 = 7