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Outline

Topics and Learning Objectives
• Discuss depth first search for graphs
• Discuss topological orderings

Exercise
• DFS run through
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Depth-First Search

• Explore more aggressively, and
• Backtrack when needed
• Linear time algorithm (again O(m + n))

• Computes topological ordering (we’ll discuss this today)
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FUNCTION DFS(G, start_vertex)
found = {v: FALSE FOR v IN G.vertices}
DFSRecursion(G, start_vertex, found)
RETURN found

FUNCTION DFSRecursion(G, v, found)
found[v] = TRUE
FOR vOther IN G.edges[v]

IF found[vOther] == FALSE
DFSRecursion(G, vOther, found)

Why is this non-
recursive function 

necessary?
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FUNCTION DFS(G, start_vertex)
found = {v: FALSE FOR v IN G.vertices}
DFSRecursion(G, start_vertex, found)
RETURN found

FUNCTION DFSRecursion(G, v, found)
found[v] = TRUE
FOR vOther IN G.edges[v]

IF found[vOther] == FALSE
DFSRecursion(G, vOther, found)

Why is this non-
recursive function 

necessary?

FUNCTION BFS(G, start_vertex)
found = {v: FALSE FOR v IN G.vertices}
found[start_vertex] = TRUE
visit_queue = [start_vertex]

WHILE visit_queue.length != 0
vFound = visit_queue.pop()
FOR vOther IN G.edges[vFound]

IF found[vOther] == FALSE
found[vOther] = TRUE
visit_queue.add(vOther)

RETURN found
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FUNCTION DFS(G, start_vertex)
found = {v: FALSE FOR v IN G.vertices}
DFSRecursion(G, start_vertex, found)
RETURN found

FUNCTION DFSRecursion(G, v, found)
found[v] = TRUE
FOR vOther IN G.edges[v]

IF found[vOther] == FALSE
DFSRecursion(G, vOther, found)

What kind of data 
structure would we need 
for an iterative version?

Why is this non-
recursive function 

necessary?
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FUNCTION DFSRecursion(G, v, found)
found[v] = TRUE
FOR vOther IN G.edges[v]

IF found[vOther] == FALSE
DFSRecursion(G, vOther, found)

Given a tie, visit edges are in alphabetical order

FUNCTION DFS(G, start_vertex)
found = {v: FALSE FOR v in G.vertices}
DFSRecursion(G, start_vertex, found)
RETURN found
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FUNCTION DFSRecursion(G, v, found)
found[v] = TRUE
FOR vOther IN G.edges[v]

IF found[vOther] == FALSE
DFSRecursion(G, vOther, found)

Given a tie, visit edges are in alphabetical order

Exercise
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Running Time

FUNCTION DFS(G, start_vertex)
found = {v: FALSE FOR v IN G.vertices}
DFSRecursion(G, start_vertex, found)
RETURN found

FUNCTION DFSRecursion(G, v, found)
found[v] = TRUE
FOR vOther IN G.edges[v]

IF found[vOther] == FALSE
DFSRecursion(G, vOther, found)

What is the depth of the recursion tree?
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An example use case for DFS
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Topological Orderings

Definition: a topological ordering of a directed acyclic graph is a 
labelling of the graph’s vertices with “f-values” such that:

1. The f-values are of the set {1, 2, …, n}
2. For an edge (u, v) of G, f(u) < f(v)
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Topological Orderings
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1. The f-values are of the set {1, 2, …, n}
2. For an edge (u, v) of G, f(u) < f(v)
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Topological Orderings
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Topological Orderings

Can be used to graph a sequence of tasks while respecting all 
precedence constraints
• For example, a flow chart for your CS degrees
• I read a funding proposal where they were using topological orderings 

to schedule robot tasks for building a space station.

Requires the graph to be acyclic.
• Why?
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Topological Orderings
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1. The f-values are of the set {1, 2, …, n}
2. For an edge (u, v) of G, f(u) < f(v)

What if we add a cycle?
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How to Compute Topological Orderings?

Straightforward solution:
1. Let v be any sink of G
2. Set f(v) = |V|
3. Recursively conduct the same procedure on G – {v}
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How to Compute Topological Orderings?

Straightforward solution:
1. Let v be any sink of G
2. Set f(v) = |V|
3. Recursively conduct the same procedure on G – {v}

How can we do this with our DFS algorithm
if we don’t know which nodes are sinks?
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Which nodes are 
sinks?

How can you find 
one using DFS?

n

Do we need to 
remove it?

Does a single call to 
DFS label all nodes?

29



Solve with DFS

FUNCTION TopologicalOrdering(G)

found = {v: FALSE FOR v IN G.vertices}

fValues = {v: INFINITY FOR v IN G.vertices}

f = G.vertices.length

FOR v IN G.vertices

IF found[v] == FALSE

DFSTopological(G, v, found, f, fValues)

RETURN fValues

FUNCTION DFSTopological(G, v, found, f, fValues)

found[v] = TRUE

FOR vOther IN G.edges[v]

IF found[vOther] == FALSE

DFSTopological(G, vOther, found, f, fValues)

fValues[v] = f

f = f - 1
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FUNCTION TopologicalOrdering(G)

found = {v: FALSE FOR v IN G.vertices}

fValues = {v: INFINITY FOR v IN G.vertices}

f = G.vertices.length

FOR v IN G.vertices

IF found[v] == FALSE

DFSTopological(G, v, found, f, fValues)

RETURN fValues

FUNCTION DFSTopological(G, v, found, f, fValues)

found[v] = TRUE

FOR vOther IN G.edges[v]

IF found[vOther] == FALSE

DFSTopological(G, vOther, found, f, fValues)

fValues[v] = f

f = f - 1 31



Running Time

Again, this algorithm is O(n + m)

We only consider each vertex once, and

We only consider each edge once (twice if you consider backtracking)
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Correctness of DFS Topological Ordering

We need to show that for any (u, v) that f(u) < f(v)

1. Consider the case when u is visited first
1. We recursively look at all paths from u and label 

those vertices first
2. So, f(u) must be less than f(v)

2. Now consider the case when v is visited first
1. There is no path back to u, so v gets labeled before 

we explore u
2. Thus, f(u) must be less than f(v)

u v

How do we know that there 
is no path from v to u?

FUNCTION DFSTopological(G, v, found,
f, fValues)

found[v] = TRUE
FOR vOther IN G.edges[v]

IF found[vOther] == FALSE
DFSTopological(G, vOther,

found, f, fValues)
fValues[v] = f
f = f - 1
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Topological Ordering

• We can use DFS to find a topological ordering since a DFS will search 
as far as it can until it needs to backtrack

• It only needs to backtrack when it finds a sink

• Sinks are the first values that must be labeled
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