Depth First Searc Topological Orde

https://cs.pomona.edu/classes/c

Outline

Topics and Learning Objectives

- Discuss depth first search for graphs
- Discuss topological orderings

Exercise

• DFS run through

Depth-First Search

- Explore more aggressively, and
- Backtrack when needed
- Linear time algorithm (again O(m + n))
- Computes topological ordering (we'll discuss this today)

```
FUNCTION DFS(G, start vertex)
  found = {v: FALSE FOR v IN G.vertices}
  DFSRecursion(G, start vertex, found)
   RETURN found
```
Why is this nonrecursive function necessary?

```
FUNCTION DFSRecursion(G, v, (found)
   found[v] = TRUEFOR vOther IN G.edges[v]
      IF found[vOther] == FALSE
         DFSRecursion(G, vOther, found)
```


```
FUNCTION DFS(G, start vertex)
   found = {v: FALSE FOR v IN G.vertices}
   DFSRecursion(G, start vertex, found)
   RETURN found
```

```
Why is this non-
recursive function 
   necessary?
```

```
FUNCTION DFSRecursion(G, v, found)
  found[v] = TRUEFOR vOther IN G.edges[v]
      IF found[vOther] == FALSE
         DFSRecursion(G, vOther, found)
```
What kind of data structure would we need for an iterative version?

Given a tie, visit edges are in alphabetical order

Running Time $m = 5$ $\leq m \leq {n \choose 2} = O(n^2)$ FUNCTION DFS(G, startWertex) found = {v: FALSE **FOR** v **IN** G.vertices} DFSRecursion(G, start_vertex, found) **RETURN** found **FUNCTION** DFSRecursion(G, v, found) $found[v] = TRUE$. T FOR vOther IN (G.edges[v] What is the depth of the recursion tree? **IF** found[vOther] == FALSE DFSRecursion(G, vOther, found)

 $= O(n^2)$

An example use case for DFS

Topological Orderings Definition: a topological ordering of a directed acyclic graph is a labelling of the graph's vertices with "f-values" such that:

- 1. The f-values are of the set $\{1, 2, ..., n\}$
- 2. For an edge (u, v) of $G_l f(u) < f(v)$

Topological Orderings

Can be used to graph a sequence of tasks while respecting all precedence constraints

- For example, a flow chart for your CS degrees
- I read a funding proposal where they were using topological orderings to schedule robot tasks for building a space station.

Requires the graph to be acyclic.

• Why?

Topological Orderings 1. The f-values are of the set $\{1, 2, ..., n\}$ 2. For an edge (u, v) of G, $f(u) < f(v)$

How to Compute Topological Orderings?

Straightforward solution:

- 1. Let v be any sink of G
- 2. Set $f(v) = |V| = \bigcap$
- 3. Recursively conduct the same procedure on $(G \{v\})$
- 1. Let v be any sink of G
- 2. Set $f(v) = |V|$
- 3. Recursively conduct the same procedure on $G \{v\}$

- 1. Let v be any sink of G
- 2. Set $f(v) = |V|$
- 3. Recursively conduct the same procedure on $G \{v\}$

- 1. Let v be any sink of G
- 2. Set $f(v) = |V|$
- 3. Recursively conduct the same procedure on $G \{v\}$

- 1. Let v be any sink of G
- 2. Set $f(v) = |V|$
- 3. Recursively conduct the same procedure on $G \{v\}$

- 1. Let v be any sink of G
- 2. Set $f(v) = |V|$
- 3. Recursively conduct the same procedure on $G \{v\}$

- 1. Let v be any sink of G
- 2. Set $f(v) = |V|$
- 3. Recursively conduct the same procedure on $G \{v\}$

- 1. Let v be any sink of G
- 2. Set $f(v) = |V|$
- 3. Recursively conduct the same procedure on $G \{v\}$

How to Compute Topological Orderings?

Straightforward solution:

- 1. Let v be any sink of G
- 2. Set $f(v) = |V|$
- 3. Recursively conduct the same procedure on $G \{v\}$

How can we do this with our DFS algorithm if we don't know which nodes are sinks?

Solve with DFS

```
FUNCTION TopologicalOrdering(G)
   found = {v: FALSE FOR v IN G.vertices}
  fValues = {v: INFINITY FOR v IN G.vertices}
   f = G.vertices.length
   FOR v IN G.vertices
      IF found [v] == FALSE
        DFSTopological(G, v, found, f, fValues)
   RETURN fValues
                                                           FUNCTION DFSTopological(G, v, found, f, fValues)
                                                             found[v] = TRUEFOR vOther IN G.edges[v]
                                                                IF found[vOther] == FALSE
                                                                   DFSTopological(G, vOther, found, f, fValues)
                                                             fValues[v] = ff = f - 1
```

```
FUNCTION TopologicalOrdering(G)
                                                          i
                                                                             h
  \begin{bmatrix} \text{found} \end{bmatrix} {v: FALSE FOR v IN G.vertices}
                                                                   k
  fValues = {v: INFINITE FOR y IN G.vertices}s
  f = G.\text{vertices.length} = \mathcal{H} \nleq \mathcal{B} \nleq \mathcal{B} \times \mathcal{B}j
                                                                            m
FOR v IN G. vertices (
                                                                                       n
     IF found [v] == FALSE
                                                  DFST (i
        DFSTopological(G, v, found, f, fValues)
                                                        DFST (K)
  RETURN fValues
                                                             DFS[(m)E
FUNCTION DFSTopological(G, v, found, f, fValues)
  found[v] = TRUEFOR vOther IN G.edges[v]
     IF found[vOther] == FALSE
        DFSTopological(G, vOther, found, f, fValues) \bigcup FST (S)DFST(\lambda)fValues[v] = ff = f - 1 31
```
Running Time

Again, this algorithm is $O(n + m)$

We only consider each vertex once, and

We only consider each edge once (twice if you consider backtracking)

Correctness of DFS Topological Ordering

We need to show that for any (u, v) that $f(u) < f(v)$

 $u \longrightarrow v$

- 1. Consider the case when u is visited first
	- 1. We recursively look at all paths from u and **label those vertices first**
	- 2. So, $f(u)$ must be less than $f(v)$
- 2. Now consider the case when v is visited first
	- 1. There is **no path back** to u, so v gets labeled before we explore u
	- 2. Thus, $f(u)$ must be less than $f(v)$

FUNCTION DFSTopological(G, v, found, f, fValues) $found[v] = TRUE$ **FOR** vOther **IN** G.edges[v] **IF** found[vOther] == FALSE DFSTopological(G, vOther, found, f, fValues) $fValues[v] = f$ $f = f - 1$

How do we know that there is no path from v to u?

Topological Ordering

- We can use DFS to find a topological ordering since a DFS will search as far as it can until it needs to backtrack
- It only needs to backtrack when it finds a sink
- Sinks are the first values that must be labeled

$EX_{2D} = EX_{1} + EX_{2}$ $3.5 + 3.5 = 7$