
Breadth First Search
https://cs.pomona.edu/classes/cs140/

https://cs.pomona.edu/classes/cs140/

Outline

Topics and Learning Objectives
• Discuss breadth first search for graphs

Exercises
• Continued from previous lecture slides
• Compute distance with Breadth-first search

3

Extra Resources

• Introduction to Algorithms, 3rd, Chapter 22
• Algorithms Illuminated Part 2: Chapter 8

4

General Algorithm

FUNCTION Connectivity(G, start_vertex)
found = {v: FALSE FOR v IN G.vertices}
found[start_vertex] = TRUE
LOOP

(vFound, vNotFound) = get_valid_edge(G.edges, found)

IF vFound == NONE || vNotFound == NONE
BREAK

ELSE
found[vNotFound] = TRUE

RETURN found s

a

b

c

e

d

f g

h

Find an edge where one vertex
has been found and the other

vertex has not been found.

5

How do we choose the next edge?

found not found

6

Two common (and well studied) options

Breadth-First Search
• Explore the graph in layers
• “Cautious” exploration
• Use a FIFO data structure (can you think of an example?)

Depth-First Search
• Explore recursively
• A more “aggressive” exploration (we backtrack if necessary)
• Use a LIFO data structure (or recursion)

7

FUNCTION BFS(G, start_vertex)
found = {v: FALSE FOR v IN G.vertices}
found[start_vertex] = TRUE
visit_queue = [start_vertex]

WHILE visit_queue.length != 0
vFound = visit_queue.pop()
FOR vOther IN G.edges[vFound]

IF found[vOther] == FALSE
found[vOther] = TRUE
visit_queue.add(vOther)

RETURN found

FUNCTION Connectivity(G, start_vertex)

found = {v: FALSE FOR v IN G.vertices}

found[start_vertex] = TRUE

LOOP

(vFound, vNotFound) =

get_valid_edge(G.edges, found)

IF vFound == NONE || vNotFound == NONE

BREAK

ELSE

found[vNotFound] = TRUE

RETURN found

8

S
A

B

C
E

D

Given a tie, visit edges are in alphabetical order

FUNCTION BFS(G, start_vertex)

found = {v: FALSE FOR v IN G.vertices}

found[start_vertex] = TRUE
visit_queue = [start_vertex]

WHILE visit_queue.length != 0

vFound = visit_queue.pop()

FOR vOther IN G.edges[vFound]
IF found[vOther] == FALSE

found[vOther] = TRUE
visit_queue.add(vOther)

RETURN found

Exercise questions 2 and 3

9

Running Time
FUNCTION BFS(G, start_vertex)

found = {v: FALSE FOR v IN G.vertices}
found[start_vertex] = TRUE
visit_queue = [start_vertex]

WHILE visit_queue.length != 0
vFound = visit_queue.pop()
FOR vOther IN G.edges[vFound]

IF found[vOther] == FALSE
found[vOther] = TRUE
visit_queue.add(vOther)

RETURN found

How many times to we consider each edge?

What is the running time?

10

Running Time
FUNCTION BFS(G, start_vertex)

found = {v: FALSE FOR v IN G.vertices}
found[start_vertex] = TRUE
visit_queue = [start_vertex]

WHILE visit_queue.length != 0
vFound = visit_queue.pop()
FOR vOther IN G.edges[vFound]

IF found[vOther] == FALSE
found[vOther] = TRUE
visit_queue.add(vOther)

RETURN found

How many times to we consider each edge?

What is the running time?

𝑇!"# 𝑛,𝑚 = 𝑂(𝑛$ +𝑚$)

where ns and ms are the nodes and
edges findable/connected from/to

the start vertex
11

Proof: BFS

Claim: BFS finds all nodes connected to the start node.

At the end of the BFS algorithm, v is marked found if there exists a path
from s to v
• Note: this is just a special case of the general algorithm that we

proved by contradiction

12

Question

The Shortest Path Problem
• How can we determine the fewest number of hops between the start

vertex and all other connected vertices?

13

s
a

b

c
e

d

Given a tie, visit edges are in alphabetical order

FUNCTION BFS(G, start_vertex)

found = {v: FALSE FOR v IN G.vertices}

found[start_vertex] = TRUE

visit_queue = [start_vertex]

WHILE visit_queue.length != 0

vFound = visit_queue.pop()

FOR vOther IN G.edges[vFound]

IF found[vOther] == FALSE

found[vOther] = TRUE

visit_queue.add(vOther)

RETURN found

How can we determine the fewest number
of hops between the start vertex and all

other connected vertices?

BFS Exercise Question 1

14

The Shortest Path Problem

Determine the fewest number of hops between the start vertex and all
other vertices

Same algorithm as before with the following additions:
• Initialize the distances[s] as 0
• Initialize all other distances to infinity
• When considering an edge (v, w)
• If w is not found, then set dist(w) to dist(v) + 1

15

s
a

b

c
e

d

Given a tie, visit edges are in alphabetical order

The Shortest Path Problem

After we terminate, distances[v] = ”the layer that v is in”

FUNCTION DistanceBFS(G, start_vertex)
found = {v: FALSE FOR v IN G.vertices}
found[start_vertex] = TRUE

distances = {v: INFINITY FOR v IN G.vertices}
distances[start_vertex] = 0

visit_queue = [start_vertex]
WHILE visit_queue.length != 0

vFound = visit_queue.pop()
FOR vOther IN G.edges[vFound]

IF found[vOther] == FALSE
found[vOther] = TRUE
visit_queue.add(vOther)
distances[vOther] = distances[vFound] + 1

RETURN distances

16

Connected Components

Let’s only consider undirected graphs for now

Let G = (V,E) be an undirected graph
Goal: compute all connected components in O(m + n)
• A component is any group of vertices that can reach one another
• For example, if we are trying to see if a network has become disconnected

Exercise question 2:
How would you do this using our BFS procedure from before?

17

A C

F

B

E I

H

D J

K

G

BFS Exercise Question 2

FUNCTION FindComponents(G)
components = []
found = {v: FALSE FOR v IN G.vertices}
FOR v IN G.vertices

IF NOT found[v]
newly_found = BFS(G, v)
new_component = {

w FOR w, w_is_found IN newly_found
IF w_is_found

}
component.append(new_component)
FOR w IN new_component:

found[w] = TRUE
RETURN components 18

