Breadth First Search

https://cs.pomona.edu/classes/cs140/

Outline

Topics and Learning Objectives

- Discuss breadth first search for graphs

Exercises

- Continued from previous lecture slides
- Compute distance with Breadth-first search

Extra Resources

- Introduction to Algorithms, $3^{\text {rd }}$, Chapter 22
- Algorithms Illuminated Part 2: Chapter 8

General Algorithm

Find an edge where one vertex has been found and the other vertex has not been found.
found = {v: FALSE FOR v IN G.vertices}
found = {v: FALSE FOR v IN G.vertices}
found[start_vertex] = TRUE
LOOP
(vFound, vNotFound) = get_valid_edge(G.edges, found)
(vFound, vNotFound) = get_valid_edge(G.edges, found)
IF vFound $==$ NONE || vNotFound $==$ NONE
BREAK
ELSE
found[vNotFound] = TRUE
RETURN found

How do we choose the next edge?

Two common (and well studied) options

Breadth-First Search

- Explore the graph in layers
- "Cautious" exploration
- Use a FIFO data structure (can you think of an example?)

Depth-First Search

- Explore recursively
- A more "aggressive" exploration (we backtrack if necessary)
- Use a LIFO data structure (or recursion)

FUNCTION BFS(G, start_vertex)

found = \{v: FALSE FOR v IN G.vertices \}
found[start_vertex] = TRUE
visit_queue = [start_vertex]

WHILE visit_queue.length != 0
vFound = visit_queue.pop() \downarrow FOR vOther IN G.edges[vFound]

$$
\begin{aligned}
& \text { IF found }[\text { vOther }]==\text { FALSE } K \\
& \text { found[vOther] }=\text { TRUE } \mathscr{C} \\
& \text { visit_queue.add(vOther) } \nless
\end{aligned}
$$

```
FUNCTION Connectivity(G, start_vertex)
    found = {v: FALSE FOR v IN G.vertices}
    found[start_vertex] = TRUE
    LOOP
        (vFound, vNotFound) =
            get_valid_edge(G.edges, found)
        IF vFound == NONE || vNotFound == NONE
            BREAK
        ELSE
            found[vNotFound] = TRUE
    RETURN found
```

RETURN found

Running Time

What is the running time?

FUNCTION BFS(G, start_vertex)
found $=$ \{v: FALSE FOR v IN G.vertices $\}$
found[start_vertex] = TRUE
visit_queue = [start_vertex]

WHILE visit_queue.length $!=0$
vFound = visit_queue.pop() $\underbrace{X,}$ FOR vOther IN G.edges[vFound] IF found[vOther] == FALSE found[vOther] = TRUE visit_queue.add(vOther)

How many times to we consider each edge? thrice

RETURN found

Running Time

What is the running time?

```
FUNCTION BFS(G, start_vertex)
    found = {v: FALSE FOR v IN G.vertices}
    found[start_vertex] = TRUE
    visit_queue = [start_vertex]
```

 WHILE visit_queue.length != 0
 vFound = visit_queue.pop()
 FOR vOther IN G.edges[vFound]
 IF found[vOther] == FALSE
 found[vOther] = TRUE
 visit_queue.add(vOther)
 RETURN found
 How many times to we consider each edge?

$$
T_{B F S}(n, m)=O\left(n_{s}+m_{s}\right)
$$

where n_{s} and m_{s} are the nodes and edges findable/connected from/to the start vertex

Proof: BFS

Claim: BFS finds all nodes connected to the start node.

At the end of the BFS algorithm, v is marked found if there exists a path from s to v

- Note: this is just a special case of the general algorithm that we proved by contradiction

Practice for a loop invariant Homework question

Question

The Shortest Path Problem

- How can we determine the fewest number of hops between the start vertex and all other connected vertices?

How can we determine the fewest number of hops between the start vertex and all other connected vertices?


```
FUNCTION BFS(G, start_vertex)
    found = {v: FALSE FOR v IN G.vertices}
    found[start_vertex] = TRUE
    visit_queue = [start_vertex]
    WHILE visit_queue.length != 0
        vFound = visit_queue.pop()
        FOR vOther IN G.edges[vFound]
        IF found[vOther] == FALSE
        found[vOther] = TRUE
        visit_queue.add(vOther)
    RETURN found
```

Given a tie, visit edges are in alphabetical order

The Shortest Path Problem

Determine the fewest number of hops between the start vertex and all other vertices

Same algorithm as before with the following additions:

- Initialize the distances[s] as 0
- Initialize all other distances to infinity
- When considering an edge (v, w)
- If w is not found, then set $\operatorname{dist}(w)$ to $\operatorname{dist}(v)+1$

The Shortest Path Problem

Given a tie, visit edges are in alphabetical order

Connected Components

Let's only consider undirected graphs for now

Let $G=(V, E)$ be an undirected graph

- A component is any group of vertices that can reach one another
- For example, if we are trying to see if a network has become disconnected

Exercise question 2:

How would you do this using our BFS procedure from before?

BFS Exercise Question 2

FUNCTION FindComponents (G)

```
components = []
found = {v: FALSE FOR v IN G.vertices}
FOR V TN G.vertices
```

IF NOT found [V]
newly_found $=\operatorname{BFS}(G, v)$
new_component $=$ \{
w FOR w, w_is_found IN newly_found
IF w_is_found
\}
component.append (new_component)
FOR w IN new_component:
found $[\mathrm{w}]=$ TRUE
RETURN components

