Graphs and Connectivity

https://cs.pomona.edu/classes/cs140/

Outline

Topics and Learning Objectives

- Discuss the basics of graphs
- Introduce graph searching

Exercise

- Graph search

Extra Resources

- Introduction to Algorithms, $3^{\text {rd }}$, Chapter 22
- Algorithms Illuminated Part 2: Chapter 7

Graphs

Represent pairwise relationships

Tons of uses

- Physical connections : roads (driving directions), network routing (phone), ...
- Relationship groups : social networks, similar purchases, ...
- Problem solving : each vertex may represent a partial part of the problem, and each edge is a step/move (e.g., Sudoku)

Tons of algorithms

- Cuts, clustering, searching, partitioning, contracting, ...

Graphs

For many reasons, graph algorithms are extremely important.

They are a ubiquitous tool for solving many engineering problems

- Signal traces on a PCB
- Balancing the load on a server
- Balancing the load across cores on a computer
- Scheduling the delivery of packages via drone
- Scheduling the path of an automated robot that is grabbing your Amazon purchase from shelves in a warehouse
- Topological networks
- Data mirroring across a network
- Modeling an ecology
- Modeling the nervous system
- The list goes on and on

For this reason, you will often be asked graph-related questions during interviews

Algorithm

BFS vs Dijkstra's vs A*

https://www.redblobgames.com/pathfinding/a-star/introduction.html
$G=(V, E)$

G is the standard symbol representing a graph
V is the standard symbol representing a set of graph vertices ($|V|=n$)

- Vertices are also sometimes referred to as nodes
E is the standard symbol representing a set of graph edges ($|E|=m$)
- Each edge contains pointers to two vertices, for example: (v1, v2)
- The order of the vertices may or may not matter

Directed and Undirected

Notation for Edges

$$
(\mathrm{A}, \mathrm{~B}) \text { or }(\mathrm{B}, \mathrm{~A})
$$

(C, D)

Graph Search and Connectivity

Goals:

- Find everything that is findable (a "path" from the start node exists)
- Don't explore anything twice (don't waste time)
- These operations are done in linear time,
- Note: it is often useful to consider $\mathrm{O}(\mathrm{n})$ algorithms as being "free"
- (when compared to more complex tasks)

Findable

Findable

Findable

Findable

What is findable?

Depends on where you start!

What is findable?

What is findable?

What is findable?

What is findable?

What is findable?

What is findable?

What is findable?

Exercise Question 1

General Algorithm

Find an edge where one vertex has been found and the other vertex has not been found.
found = {v: FALSE FOR v IN G.vertices}
found = {v: FALSE FOR v IN G.vertices}
found[start_vertex] = TRUE
LOOP
(vFound, vNotFound) = get_valid_edge(G.edges, found)
IF vFound $==$ NONE || vNotFound $==$ NONE
BREAK
ELSE
found[vNotFound] = TRUE
RETURN found

General Algorithm Outline

Claim: at the end of this algorithm

- if v is found
- Then there exists a path from s to v

Proof by contradiction

- Suppose the graph G has a path p from the vertex s to the vertexs v
- Also suppose that upon completion of the algorithm v was not found
- Thus, we have an edge (u, w) such that u is found, and w is not found
- This is contradictory to the termination condition of the algorithm

Contradiction

Suppose G has a path p from s to v
Also suppose that upon completion of the algorithm \vee was not found Thus we have an edge (u, w) such that u is found and w is not found This is contradictory to the termination condition of the algorithm

General Algorithm

```
FUNCTION Connectivity(G, start_vertex)
    found = {v: FALSE FOR v IN G.vertices}
    found[start_vertex] = TRUE
LOOP
```

 (vFound, vNotFound) = get_valid_edge(G.edges, found)
 IF vFound \(==\) NONE || vNotFound \(==\) NONE
 BREAK
 ELSE
 found[vNotFound] = TRUE
 RETURN found

How do we choose the next edge?

Two common (and well studied) options

Breadth-First Search

- Explore the graph in layers
- "Cautious" exploration
- Use a FIFO data structure (can you think of an example?)

Depth-First Search

- Explore recursively
- A more "aggressive" exploration (we backtrack if necessary)
- Use a LIFO data structure (or recursion)

