Randomized (Linear-Time) Selection

https://cs.pomona.edu/classes/cs140/

Selection Problem

Input: A set of n numbers and an integer i, with $1 \leq i \leq n$
Output: The element that is larger than exactly $i-1$ other elements

- Known as the $i^{\text {th }}$ order statistic or the $i^{\text {th }}$ smallest number
- The minimum element is the $1^{\text {st }}$ order statistic $(i=1)$
- The maximum element is the $\mathrm{n}^{\text {th }}$ order statistic $(\mathrm{i}=\mathrm{n})$

What is " i " for the median? (an expression base on n)

- If n is even, then the medians are the $\mathrm{n} / 2$ and $\mathrm{n} / 2+1$ order statistics
- If n is odd, then the median is the $(n+1) / 2$ order statistic

Reduction

Find the $i^{\text {th }}$ smallest number in an array

- Recall: it takes linear time just to read an array
- What would be a $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$ algorithm for this problem?
- Sort
- Return the element at index i-1

Selection Problem

- Can we do better than $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$?
- To beat $O(n \lg n)$ we cannot sort the entire array
- Note: comparison-based sorting cannot be done faster than O(n Ig n)
- (you'll prove this later)
- Do we even need to perform a comparison with all the elements?
- Yes!
- So we know that $\mathrm{O}(\mathrm{n})$ is our lower bound on the running time
- What is the upper bound?

Finding the minimum ($1^{\text {st }}$) and maximum ($\mathrm{n}^{\text {th }}$)

FUNCTION FindMinimum(array)

$$
\begin{aligned}
& \mathrm{n}=\text { array.length } \\
& \text { min_val = array[0] } \\
& \text { FOR val IN array[1 } \ldots<\mathrm{n}] \\
& \quad \text { IF val < min_val } \\
& \quad \text { min_val = val }
\end{aligned}
$$

RETURN min_val

FUNCTION FindMaximum(array)

$$
\begin{aligned}
& \mathrm{n}=\text { array.length } \\
& \text { max_val = array[0] } \\
& \text { FOR val IN array[1 } \ldots<\mathrm{n}] \\
& \quad \text { IF val > max_val } \\
& \quad \text { max_val = val }
\end{aligned}
$$

RETURN max_val

General Algorithm

- How do you find the ith order statistic in the more general case?

Randomized Selection (Quickselect)

(Expected) linear-time complexity

- Same as scanning through the list once

One linear algorithm for this problem is called Randomized Selection

We are going to start by modifying the only randomized algorithm that we we've seen so far: Quicksort

Key Component of Quicksort: Partitioning

Pivot

3	8	2	5	1	4	7	6

Pivot							
2	1	3	6	7	4	5	8

$<\mathrm{P} \quad \mathrm{P} \quad>\mathrm{P}$

Key Component of Quicksort: Partitioning

> Pivot

3	8	2	5	1	4	7	6

Pivot							
2	1	3	6	7	4	5	8

What if we are looking for the $5^{\text {th }}$ order statistic?

- What is the fifth order statistic?
- Do we need to recursively look on both sides of the pivot?

Quicksort

How do we turn this into Quickselect?

```
FUNCTION QuickSort(array, left_index, right_index)
```

FUNCTION Partition(array, left_index, right_index)

```
IF left_index \geq right_index
    RETURN
```

MovePivotToLeft(left_index, right_index)
pivot_index = Partition(array, left_index, right_index)
QuickSort(array, left_index, pivot_index)
QuickSort(array, pivot_index + 1, right_index)

```
pivot_value = array[left_index]
i = left_index + 1
    FOR j IN [left_index + 1 ..< right_index]
    IF array[j] < pivot_value
        swap(array, i, j)
        i = i + 1
```

 swap(array, left_index, i - 1)
 RETURN i - 1

Quickselect

How do we turn this into Quickselect?

```
IF left_index == right_index
```

IF left_index == right_index
RETURN array[left_index]

```
    RETURN array[left_index]
```

FUNCTION RSelect(array, left_index, right_index, ith)

```
MovePivotToLeft(left_index, right_index)
pivot_index = Partition(array, left_index, right_index)
```

```
IF ith == pivot_index + 1
    RETURN array[pivot_index]
ELSE IF ith < pivot_index + 1
    RETURN RSelect(array, left_index, pivot_index, ith)
ELSE
    RETURN RSelect(array, pivot_index + 1, right_index, ith)
```

FUNCTION Partition(array, left_index, right_index)

```
pivot_value = array[left_index]
```

i = left_index + 1
FOR j IN [left_index + 1 .. $<$ right_index]
IF array[j] < pivot_value
swap(array, i, j)
i = i + 1
swap(array, left_index, i - 1)
RETURN i - 1

FUNCTION RSelectIter(array, left_index, right_index, ith)
LOOP

$$
\begin{gathered}
\text { IF left_index == right_index } \\
\text { RETURN array[left_index] }
\end{gathered}
$$

```
MovePivotToLeft(left_index, right_index)
pivot_index = Partition(array, left_index, right_index)
IF ith == pivot_index + 1
    RETURN array[pivot_index]
```

ELSE IF ith < pivot_index + 1
right_index = pivot_index
ELSE
left_index = pivot_index + 1

Iterative Version

1. Asymptotically, do you expect any differences?
2. Practically, which do you think has better performance?

Running time of Quickselect

- What is the worst possible running time?
- What is the worst pivot choice?
- What is the best possible running time?
- You're more likely to finish the algorithm in linear time than in quadratic (worst-case) time.
- Under normal operation, what is the best choice for a pivot?

Running time of Quickselect

- Under normal operation, what is the best choice for a pivot?
- What is the running time if we always deterministically pick the median?
- How would you calculate the running time if I told you that the algorithm always picked the median?

$$
T(n) \leq T\left(\frac{n}{2}\right)+O(n) \rightarrow O(n)
$$

Quickselect

Hope: that the choice of pivot is "good enough" "often enough"

Theorem:
for every input array, the average running time of Quickselect is $\mathrm{O}(\mathrm{n})$

Quickselect

Where is all the work done?

```
FUNCTION RSelect(array, left_index, right_index, ith)
IF left_index == right_index
    RETURN array[left_index]
MovePivotToLeft(left_index, right_index)
pivot_index = Partition(array, left_index, right_index)
IF ith == pivot_index + 1
    RETURN array[pivot_index]
```

ELSE IF ith < pivot_index + 1
RETURN RSelect(array, left_index, pivot_index, ith)
ELSE

```
FUNCTION Partition(array, left_index, right_index)
```

pivot_value = array[left_index]
i = left index + 1
FOR j IN [left_index + 1 .. $<$ right_index]
IF array[j] < pivot_value
swap(array, i, j)
i = i + 1

```
swap(array, left_index, i - 1)
RETURN i - 1
```


Quickselect

Hope: that the choice of pivot is "good enough" "often enough"

Theorem:
for every input array, the average running time of Quickselect is $\mathrm{O}(\mathrm{n})$

All the work is done in partition and the total amount of work done in a single call to partition is $\leq c n$

100 \# not sorted

$$
\begin{aligned}
& 100 \cdot O(n) \\
& =O\left(n^{2}\right)
\end{aligned}
$$

Notation for our proof

Quickselect is in phase jif the current subarray size is between

$$
n \cdot\left(\frac{3}{4}\right)^{j+1} \leq(\text { right_index - left_index }) \leq n \cdot\left(\frac{3}{4}\right)^{j}
$$

- $\mathrm{j}=0: 0.75 \mathrm{n}$ to 1.00 n
- $\mathrm{j}=1: 0.56 \mathrm{n}$ to 0.75 n
- $\mathrm{j}=2: 0.42 \mathrm{n}$ to 0.56 n
- $\mathrm{j}=3: 0.32 \mathrm{n}$ to 0.42 n
- Multiple recursive calls can be in the same phase ${ }_{j}$
- Some phases can be skipped

Phase 0

$$
0.75 n \text { to } 1.00 n
$$

\square
\square

Phase 1

$$
0.56 n \text { to } 0.75 n
$$

\square
\square
Phase 2
$0.42 n$ to $0.56 n$

Phase 3
$0.32 n$ to $0.42 n$

Phase 4
$0.24 n$ to $0.32 n$

Proof

- Multiple recursive calls can be in the same phase j_{j}
- Some recursive calls can skip over the next phase j_{j}
- Let X_{j} denote the number of recursive calls made during phase ${ }_{j}$
- Note: each recursive call in turn calls Partition
- What is the total running time of Quickselect?

$$
T(n) \leq \sum_{\text {phase }_{j}} X_{j} c\left(\frac{3}{4}\right)^{j} n
$$

$$
T(n) \leq \sum_{\text {phase }_{j}} X_{j} c\left(\frac{3}{4}\right)^{j} n
$$

- X_{j}
: number of calls in phase e_{j} (not an indicator variable)
- c : constant for amount of work done by Partition
- $(3 / 4)^{\text {in }} \quad$: upper bound on subarray size during phase ${ }_{j}$
- $\mathrm{c}(3 / 4)^{\mathrm{j}} \mathrm{n} \quad:$ total amount of work during a single call in phase ${ }_{j}$

Probability of leaving a phase?

- We leave phase ${ }_{j}$ when our pivot is within the $25-75 \%$ middle part of the subarray.

- What is thëprobability that we choose a partition in (25..75]?

Probability of leaving a phase?

- We have (at worst) a 50% chance to pick a "good" partition element.
- Which means that we leave the current phase $_{j}$.
- So, we have reduced our problem to the coin flip problem:

$$
E\left[X_{j}\right] \leq E[\# \text { of coin flips to get heads }]
$$

```
Heads :good pivot
Tails : bad pivot
```


Coin Flips

- Let $\mathrm{N}=$ the number of flips until you get a heads (a geometric random variable)
$\mathrm{E}[\mathrm{N}]=1+1 / 2 \mathrm{E}[\mathrm{N}]$
$\mathrm{E}[\mathrm{N}]=1+1 / 2+1 / 4 \mathrm{E}[\mathrm{N}]$
$\mathrm{E}[\mathrm{N}]=1+1 / 2+1 / 4+1 / 8 \mathrm{E}[\mathrm{N}]$
Need at least one flip. Then we have a 50% chance that it was tails and we need to flip again.
$\mathrm{E}[\mathrm{N}]=1+1 / 2+1 / 4+1 / 8+1 / 16 \mathrm{E}[\mathrm{N}]$

Coin Flips

- Let $\mathrm{N}=$ the number of flips until you get a heads (a geometric random variable)
$E[N]=1+1 / 2 E[N]$
$\mathrm{E}[\mathrm{N}]=1+1 / 2+1 / 4 \mathrm{E}[\mathrm{N}]$
$\mathrm{E}[\mathrm{N}]=1+1 / 2+1 / 4+1 / 8 \mathrm{E}[\mathrm{N}]$
Need at least one flip. Then we have a 50\% chance that it was tails and we need to flip again.
$\mathrm{E}[\mathrm{N}]=1+1 / 2+1 / 4+1 / 8+1 / 16 \mathrm{E}[\mathrm{N}]$ $\mathrm{E}[\mathrm{N}]=2$

Coin Flips

- Let $N=$ the number of flips until you get a heads (a geometric random variable)
- Alternatively, what is the expected number of heads per coin flip?

$$
\begin{aligned}
& E[\# \text { of heads per flip }]=\frac{1}{2} \cdot 1+\frac{1}{2} \cdot 0=\frac{1}{2} \\
& \text { Total }_{\text {heads }}=E[\# \text { of heads per flip }] \cdot N \\
& 1=\frac{N}{2} \rightarrow \mathrm{~N}=2
\end{aligned}
$$

Back to the proof

$$
\begin{gathered}
T(n) \leq \sum_{\text {phase }_{j}} X_{j} c\left(\frac{3}{4}\right)^{j} n \\
E[T(n)] \leq c n \sum_{\text {phase }_{j}} E\left[X_{j}\right]\left(\frac{3}{4}\right)^{j}
\end{gathered}
$$

Expected Value of T

$$
\begin{gathered}
E[T(n)] \leq E\left[\sum_{\text {phase } j} X_{j} c\left(\frac{3}{4}\right)^{j} n\right] \\
E[T(n)] \leq c n \sum_{\text {phase } j} E\left[X_{j}\right]\left(\frac{3}{4}\right)^{j}
\end{gathered}
$$

Expected Value of T

$$
\begin{aligned}
& E[T(n)] \leq E\left[\sum_{\text {phase } j} X_{j} c\left(\frac{3}{4}\right)^{j} n\right] \\
& E[T(n)] \leq c n \sum_{\text {phase } j} E\left[X_{j}\right]\left(\frac{3}{4}\right)^{j}
\end{aligned}
$$

Expected Value of T

We saw the same summation in our proof of the master theorem

Geometric sequence
$\leq \frac{1}{1-r}=\frac{1}{1-\left(\frac{3}{4}\right)}=4$

$$
E[T(n)] \leq E\left[\sum_{\text {phase } j} X_{j} c\left(\frac{3}{4}\right)^{j} n\right]
$$

$$
\text { F Converges to } 4
$$

$$
E[T(n)] \leq 2 c n 4=c_{\text {combined }} n=O(n)
$$

Running time of Quickselect

$$
E[T(n)] \leq c_{\text {combined }} n=O(n)
$$

Thus, the $\boldsymbol{\text { aVerage running time of Quickselect } T (n) < = O (n) ~}$

