Quicksort Correctness Proof

https://cs.pomona.edu/classes/cs140/

https://cs.pomona.edu/classes/cs140/

Outline

* Learn how quicksort works
* Learn how to partition an array

* Quicksort loop invariant

Extra Resources

* https://me.dt.in.th/page/Quicksort/
e https://www.youtube.com/watch?v=ywWBy6J5gz8
* CLRS Chapter 7

* Algorithms llluminated Chapter 5

https://me.dt.in.th/page/Quicksort/
https://www.youtube.com/watch?v=ywWBy6J5gz8

What do we need to do?

Input: an array of n items in arbitrary order
Output: the same number in non-decreasing order
Assumptions: the items must be orderable (from an ordinal set)

Theorem: the Quicksort algorithm arranges all items in non-decreasing
order.

1. Lemma involving Partition
2. Lemmainvolving QuickSort

31 47 11 91 67 23 89 51

31 47 11 91 67 23 89 51

11 23 31 51 89 67 91 47

(partition)
11 23 (doesn't match function from slides)

Not a copy! (In-place)

base

Not a copy!

11 23
11| 23

23

P

_—

base

.47 11 91 67 23 89 51

11 23.51 89 67 91 47

(partition)
(doesn't match function from slides)

base

Not a copy!

11 23
11| 23

23

P

_—

base

.47 11 91 67 23 89 51

11 23.51 89 67 91 47

(partition)
(doesn't match function from slides)

\\\\\\\\\\\\$ Not a copy!

51 89 67 91 47

base

Not a copy!

11 23
11| 23

23

P

_—

base

.47 11 91 67 23 89 51

11 23.51 89 67 91 47
(partition)

Not a copy!

(doesn't match function from slides) 89 67 91 47

47 (81 91 67 89

L

47
base

91 67 89

.47 11 91 67 23 89 51

Not a copy! /11 23 (31 51 89 67 91 47 Not a copy!
(partition)

. 23 (doesn't match function from slides) 89 67 91 47

11| 23 47 (81 91 67 89

base 23 47 . 67 89

base base

10

.47 11 91 67 23 89 51

Not a copy! /11 23 (31 51 89 67 91 47 Not a copy!
(partition)

. 23 (doesn't match function from slides) 89 67 91 47

11| 23 47 (81 91 67 89

base 23 47 . 67 89

base base

11 23 31 47 51 67 89 91 67| 89

base 89

11

.47 11 91 67 23 89 51

Not a copy! /11 23 (31 51 89 67 91 47 Not a copy!
(partition)

. 23 (doesn't match function from slides) 89 67 91 47

base 47 91 67 89
base
67 89 |91
.89 base
11 23 31 47 51 67 89 91 =2
base 89

base

12

Partition proof of correctness

67 44 21 87 5 101
m 0 1 left left + 1 right - 1 right

) ——

FUNCTION Partition(array, left_index, right_index)

pivot_value = array[left_index]
i1 = left_index + 1
FOR j IN [left_index + 1 ..< right_index]
IF array[j] < pivot_value
swap(array, i, j)
i=1+1
swap(array, left_index, i - 1)
RETURN i -1

-31
right + 1

13

Partition proof of correctness

67 a4 21 87 5 101 31 4
m 0 1 left left + 1 right - 1 right right + 1 n-

) ——

FUNCTION Partition(array, left_index, right_index)

pivot_value = array[left_index]

i = left index + 1 How do we prove that
FOR j IN [left_index + 1 ..< right_index] Partitionis correct?

IF array[j] < pivot_value
swap(array, i, j)
i=1+1

swap(array, left_index, i - 1)
RETURN i -1

14

Loop Invariant Proofs

1. State the loop invariant
1. A statement that can be easily proven true or false
2. The statement should
3. The statement should

Initialization
2. Show that the loop invariant is true before the loop starts

Maintenance
3. Show that the loop invariant holds when executing any iteration

4. Show that the loop invariant holds once the loop ends | Termination

Partition proof of correcti

& a .o
" index R s o Rt leRel

/

FUNCTION Partition(array, left_index, right_iﬁ

pivot_value = array[left_index]
i1 = left_index + 1
FOR j IN [left_index + 1 ..< right_index]
IF arrayl[j] < pivot_value
swap(array, i, j)
i=1+1
swap(array, left_index, i - 1)
RETURN i -1

Exercise

1. State the loop invariant

1. A statement that can be easily
proven true or false

2. The statement should reference
the purpose of the loop

3. The statement should reference
variables that change each iteration

Initialization

2. Show that the loop invariant is true
before the loop starts

Maintenance

3. Show that the loop invariant holds
when executing any iteration

4. Show that the loop invariant holds
once the loop ends

Terminatic1>6n

Partition proof of correctness

67 a4 21 87 5 101 31 4
m 0 1 left left + 1 right - 1 right right + 1 n-1

) ——

FUNCTION Partition(array, left_index, right_index)

pivot_value = array[left_index]
i = left_index + 1 How do we prove that

FOR j IN [left_index + 1 ..< right_index] Partitionis correct?

IF array[j] < pivot_value

swap(array, i, j)

i=1+1
Loop Invariant: At the start of the iteration with indices i and j:
1. Allitemsinarray[1+1 ..= i-1] are<pivot value
RETURN 1 -1 2. Allitemsinarray/[i ..= J-1] are2pivot value

swap(array, left_index, i - 1)

17

Loop Invariant: At the start of the

Pa rtitiOn PrOOf iteration with indices i and j:

1. Allitemsinall+1 ..=i-1] are < pivot
2. Allitemsinali..=j-1] are > pivot

1

FUNCTION Partition(a, 1, r)
pivot_value = a[l]
1i=1+1
FOR j IN [1 + 1 ..< r]

IF al[j] < pivot_value
swap(a, i, j)
1i=1+1

swap(a, 1, i - 1)
RETURN 1 - 1 18

.y - Loop Invariant: At the start of the
Partlthn PrOOf iter:n,tion with indices i and j:
1. Allitemsinall+1 ..=i-1] are < pivot
2. Allitemsinali..=j-1] are > pivot
[O -
‘h FUNCTION Partition(a, 1, r)
pivot_value = a[l]
Initialization: Show that the loop 1=1+1
invariant is true before the loop starts FOR j IN [L + 1 ..<r]
IF al[j] < pivot_value
1. No numbersin a[l+1 ..=i-1] swap(a, i, j)
2. No numbersinali..=j-1] i=1i+1
swap(a, 1, i - 1)
RETURN 1 - 1 19

Loop Invariant: At the start of the

Pa rtition PrOOf iteration with indices i and j:

1. Allitemsinall+1 ..=i-1] are < pivot
2. Allitemsinali..=j-1] are > pivot

FUNCTION Partition(a, 1, r)
pivot_value = al[l]

Maintenance (case 1): Show that the 1=1+1
loop invariant holds when executing any FOR j IN [L + 1 ..< r]
iteration IF al[j] < pivot_value

true
swap(a, i, j)

* Suppose conditionslandw i=1i+1

* Now, suppose alj] < pivot swap(a, 1, i - 1)
RETURN 1 - 1 20

Partition Proof

Maintenance (case 1):
* Suppose conditions 1 and 2 are met.

Loop Invariant: At the start of the
iteration with indices i and j:

1. Allitemsinall+1 ..=i-1] are < pivot
2. Allitemsinali..=j-1] are > pivot

FUNCTION Partition(a, 1, r)
pivot_value = a[l]
1i=1+1
FOR j IN [1 + 1 ..< r]

 Now, suppose a[j] < pivot

 Then a[j] and ali] are swapped

By (2), a[i] was > pivot so now
ali] < pivot and alj] > pivot

B . 1IF alj] < pivot_value

swap(a, i, j)

1 =1+ 1
swap(a, 1, i - 1)
RETURN 1 - 1 21

Partition Proof

Maintenance (case 1):
* Suppose conditions 1 and 2 are met.

Loop Invariant: At the start of the
iteration with indices i and j:

1. Allitemsinall+1 ..=i-1] are < pivot
2. Allitemsinali..=j-1] are > pivot

FUNCTION Partition(a, 1, r)
pivot_value = a[l]
1i=1+1
FOR j IN [1 + 1 ..< r]

 Now, suppose a[j] < pivot

 Then a[j] and ali] are swapped

By (2), a[i] was > pivot so now
ali] < pivot and alj] > pivot

B . 1IF alj] < pivot_value

swap(a, i, j)

1 =1+ 1
swap(a, 1, i - 1)
RETURN 1 - 1 22

Partition Proof

n

Maintenance (case 1):
* Suppose conditions 1 and 2 are met.

Loop Invariant: At the start of the
iteration with indices i and j:

1. Allitemsinall+1 ..=i-1] are < pivot
2. Allitemsinali..=j-1] are > pivot

FUNCTION Partition(a, 1, r)
pivot_value = a[l]
1i=1+1
FOR j IN [1 + 1 ..< r]

 Now, suppose a[j] < pivot
 Then a[j] and ali] are swapped
By (2), a[i] was > pivot so now
ali] < pivot and alj] > pivot
* Incrementingiand j satisfies 1 and 2

BB 1F alj] < pivot_value

swap(a, i, j)

1 =1+ 1
swap(a, 1, i - 1)
RETURN 1 - 1 23

Loop Invariant: At the start of the

Pa rtitiOn PrOOf iteration with indices i and j:

1. Allitemsinall+1 ..=i-1] are < pivot
2. Allitemsinali..=j-1] are > pivot

ﬁ FUNCTION Partition(a, 1, r)
pivot_value = a[l]

Maintenance (case 2): i=1+1

e Suppose conditions 1 and 2 are met. FOR j IN [L +1 ..< r]

* Now, suppose alj] 2 pivot M—»IF aljl < pivot_value
swap(a, i, j)
1i=1+1

swap(a, 1, i - 1)
RETURN 1 - 1 24

Loop Invariant: At the start of the

Pa rtitiOn PrOOf iteration with indices i and j:

1. Allitemsinall+1 ..=i-1] are < pivot
2. Allitemsinali..=j-1] are > pivot

- I
ﬁ FUNCTION Partition(a, 1, r)
pivot_value = a[l]
Maintenance (case 2): i=1+1
* Suppose conditions 1 and 2 are met. FOR j IN [L +1 ..<r]
* Now, suppose alj] 2 pivot IﬁEI——+IF aljl < pivot_value
* We do not changeiso (1) holds swap(a, 1, j)

1i=1+1
swap(a, 1, i - 1)
RETURN 1 - 1 5

Loop Invariant: At the start of the

Pa rtitiOn PrOOf iteration with indices i and j:

1. Allitemsinall+1 ..=i-1] are < pivot
2. Allitemsinali..=j-1] are > pivot

- I -
FUNCTION Partition(a, 1, r)
pivot_value = a[l]
Maintenance (case 2): i=1+1
e Suppose conditions 1 and 2 are met. FOR j IN [L +1 ..< r]
* Now, suppose alj] 2 pivot M—»IF aljl < pivot_value
* We do not changeiso (1) holds swap(a, 1, j)
e Weincrement jso (2) holds i=1i+1
swap(a, 1, i - 1)
RETURN 1 - 1 26

Partition Proof

n

Loop Invariant: At the start of the
iteration with indices i and j:

1. Allitemsinall+1 ..=i-1] are < pivot
2. Allitemsinali..=j-1] are > pivot

Termination: Show that the loop

invariant holds once the loop ends
e Assume (1) and (2) are true

* Nowj=r

c A
c A
c A

items have been considered
items in al[l+1 .= i-1] are < pivot
items in ali..= j-1] are = pivot

FUNCTION Partition(a, 1, r)
pivot_value = a[l]
1i=1+1
FOR j IN [1 + 1 ..< r]

IF al[j] < pivot_value
swap(a, i, j)
1i=1+1

swap(a, 1, i - 1)
RETURN 1 - 1 27

.-y Loop Invariant: At the start of the

Pa rt|t|0n PrOOf iteration with indices i and j:
1. Allitemsinall+1 ..=i-1] are < pivot
2. Allitemsinali..=j-1] are > pivot
FUNCTION Partition(a, 1, r)

pivot_value = a[l]
After the loop we perform the final 1=1+1
swap FOR j IN [1L + 1 ..< r]

IF al[j] < pivot_value
swap(a, i, j)
1i=1+1

swap(a, 1, i - 1)
RETURN 1 - 1 8

What do we need to do?

Input: an array of n items in arbitrary order
Output: the same number in non-decreasing order
Assumptions: the items must be orderable (from an ordinal set)

Theorem: the Quicksort algorithm arranges all items in non-decreasing
order.

1. Lemma: see proof by loop invariant of Partition
2. Lemmainvolving QuickSort

Theorem: the Quicksort algorithm arranges all items in non-
decreasing order.

Loop Invariant: At the start of the iteration with indices i and j:
1. Allitemsinarray[l+1 ..= i-1] are<pivot value
2. Allitemsinarray/[i ..= J-1] arezpivot value

(See corresponding proof by loop invariant)

1. Lemma 2 involving QuickSort

30

Proof by Induction in General

Some property P that we want to prove
* A base case: some statement regarding

* An inductive hypothesis: we know that is true
* An inductive step: if is correct then so is because...

For quicksort we are going to use a slightly different form

* If P(k) where k < n is correct, then P(n) is also correct

* An inductive hypothesis: assume we know that is true
* An inductive step: if is correct then so is because...

Proof by Induction Cheat-sheet

Proof by induction that holds for all n

1. P(1) holds because

2. Let’s assume that P(k) (where k < n) holds.
3. holds because of P(k) and

4. Thus, by induction, holds for all n

We can infer all intermediate jumps due to steps 1 and 3.

32

Proof by induction that
* P(1) holds because ...

Quicksort Proof

* Thus, by induction,

holds for all n

* Let’s assume that P(k) (where k < n) holds.
holds because of P(k) and ...

holds for all n

o -

33

Proof by induction that holds for all n
* P(1) holds because ...

Quicksort Proof

holds because of P(k) and ...

e Thus, by induction, holds for all n

* Let’s assume that P(k) (where k < n) holds.

P(n) = arranges all items in non-decreasing order.

- P

34

Proof by induction that holds for all n
* P(1) holds because ...

Quicksort Proof

holds because of P(k) and ...

e Thus, by induction, holds for all n

* Let’s assume that P(k) (where k < n) holds.

P(n) = arranges all items in non-decreasing order.
* P(1) is an array of one element, and any such array is always sorted.

» Assume (hypothesis) [

* P(n) holds because:

35

Proof by induction that holds for all n

holds because ...

Quicksort Proof

* Let’s assume that (where k < n) holds.
holds because of and ...
e e Thus, by induction, holds for all n

P(n) = arranges all items in non-decreasing order.
* P(1) is an array of one element, and any such array is always sorted.
* Assume (hypothesis) that P(k) is correct for k < n

* P(n) holds because:
* Let ki, Kiight = the lengths of the left and right subarrays
* Kty Kignt < N (strictly less than n)
* By our inductive hypothesis, the left and right subarrays are correctly sorted
* The partition loop-invariant guarantees that the pivot is in the correct spot

Proof by induction that holds for all n

holds because ...

Quicksort Proof

* Let’s assume that (where k < n) holds.
holds because of and ...
e e Thus, by induction, holds for all n

P(n) = arranges all items in non-decreasing order.

. . .
* P(1) is an array of one element, and any such array is always sorted. ~*°*°

* Assume (hypothesis) that P(k) is correct for k < n Inductive Hypothesis

* P(n) holds because:
* Let ki, Kiight = the lengths of the left and right subarrays
* Kty Kignt < N (strictly less than n)
* By our inductive hypothesis, the left and right subarrays are correctly sorted
* The partition loop-invariant guarantees that the pivot is in the correct spot

Inductive Step

Theorem: the Quicksort algorithm arranges all items in non-
decreasing order.

Loop Invariant: At the start of the iteration with indices i and j:
1. Allitemsinarray[l+1 ..= i-1] are<pivot value
2. Allitemsinarray/[i ..= J-1] arezpivot value

(See corresponding proof by loop invariant)

P(n) = Quicksort arranges all items in non-decreasing order.

(See corresponding proof by induction)

