
Master Method
https://cs.pomona.edu/classes/cs140/

https://cs.pomona.edu/classes/cs140/

Notes on checkpoint

• The checkpoint will be administered through gradescope
• You should come to class
• You have these options (maybe more?)
• Write answers directly on gradescope (bring your laptop)

• Should I try to reserve a lab?
• Write answers on paper and upload to gradescope
• Write answers on a tablet, export to image or PDF, and upload to gradescope

• You will have plenty of time, so you might want to bring something to
read during the down time

2

Outline

Topics and Learning Objectives
• Learn about the master method for solving recurrences
• Understand how to draw general recursion trees

Exercise
• Applying the Master Method

3

Extra Resources

• Chapter 4 (sections 4-6) in CLRS
• Algorithms Illuminated: Part 1: 4Chapter 4
• Master Method

4

https://www.cs.cornell.edu/courses/cs3110/2012sp/lectures/lec20-master/lec20.html

Master Method

• For “solving” recurrences

T(n) = the # of operations required to complete algorithm
T(n) = 2T(n/2) + 7n

Base Case: T(1) ≤ base-case-work

Recurrence: T(n) ≤ recursive-work + combine-work

5

Recurrence Equation

• When an algorithm contains a recursive call to itself

• We usually specify its running time by a recurrence equation

• We also sometimes just call this a “recurrence”

• A recurrence equation describes the overall running time on a
problem of size n in terms of the running time on smaller inputs
(some fraction of n)

6

T(n/2)

T(n/2)

FUNCTION MergeSort(array)
n = array.length
IF n == 1

RETURN array

left_sorted = MergeSort(array[0 ..< n//2])
right_sorted = MergeSort(array[n//2 ..< n])

array_sorted = Merge(left_sorted, right_sorted)

RETURN array_sorted

O(1)

O(1)

O(1)

T(n)

O(n)

O(1)

T(n) = 2 T(n/2) + O(n)
Recurrence Equation

7

Master Method

“Black Box” for solving recurrences

Assumes all subproblems are of equal size (most algorithms do this)
• The same amount of data is given to each recursive call

An algorithm that splits the subproblems into 1/3 and 2/3 (or an algorithm
that splits data randomly) must be solved in a different manner. We’ll look at
other methods later

8

Master Method Recurrence Equation

𝑇 𝑛 ≤ 𝑎 𝑇 %𝑛 𝑏 + 𝑂(𝑛!)

T(n) : total amount of operations
a : recursive calls (# of subproblems), always >= 1
b : fraction of input size (shrinkage), always > 1
d : extra work needed to combine, always >= 0

What does zero mean for d?

9

Master Method Cases

𝑇 𝑛 ≤ 𝑎 𝑇 %𝑛 𝑏 + 𝑂(𝑛!)

𝑇 𝑛 =
𝑂 𝑛! lg 𝑛 , 𝑎 = 𝑏!

𝑂 𝑛! , 𝑎 < 𝑏!

𝑂 𝑛"#$!% , 𝑎 > 𝑏!

10

Master Method Cases

𝑇 𝑛 ≤ 𝑎 𝑇 %𝑛 𝑏 + 𝑂(𝑛!)

𝑇 𝑛 =
𝑂 𝑛! lg 𝑛 , 𝑎 = 𝑏!

𝑂 𝑛! , 𝑎 < 𝑏!

𝑂 𝑛"#$!% , 𝑎 > 𝑏!

Case 1

Case 2

Case 3

11

Exercise

Merge sort

𝑇 𝑛 ≤ 𝑎 𝑇 %𝑛 𝑏 + 𝑂(𝑛!)

T(n) : total amount of operations

a : recursive calls (# of subproblems), always >= 1

b : fraction of input size (shrinkage), always > 1

d : extra work needed to combine, always >= 0

𝑇 𝑛 =
𝑂 𝑛! lg 𝑛 , 𝑎 = 𝑏!

𝑂 𝑛! , 𝑎 < 𝑏!

𝑂 𝑛"#$!% , 𝑎 > 𝑏!

12

Exercise

Binary search

𝑇 𝑛 ≤ 𝑎 𝑇 %𝑛 𝑏 + 𝑂(𝑛!)

T(n) : total amount of operations

a : recursive calls (# of subproblems), always >= 1

b : fraction of input size (shrinkage), always > 1

d : extra work needed to combine, always >= 0

𝑇 𝑛 =
𝑂 𝑛! lg 𝑛 , 𝑎 = 𝑏!

𝑂 𝑛! , 𝑎 < 𝑏!

𝑂 𝑛"#$!% , 𝑎 > 𝑏!

13

Exercise

Closest pair

𝑇 𝑛 ≤ 𝑎 𝑇 %𝑛 𝑏 + 𝑂(𝑛!)

T(n) : total amount of operations

a : recursive calls (# of subproblems), always >= 1

b : fraction of input size (shrinkage), always > 1

d : extra work needed to combine, always >= 0

𝑇 𝑛 =
𝑂 𝑛! lg 𝑛 , 𝑎 = 𝑏!

𝑂 𝑛! , 𝑎 < 𝑏!

𝑂 𝑛"#$!% , 𝑎 > 𝑏!

14

Exercise

T(n) ≤ 2 T(n/2) + O(n2)

𝑇 𝑛 ≤ 𝑎 𝑇 %𝑛 𝑏 + 𝑂(𝑛!)

T(n) : total amount of operations

a : recursive calls (# of subproblems), always >= 1

b : fraction of input size (shrinkage), always > 1

d : extra work needed to combine, always >= 0

𝑇 𝑛 =
𝑂 𝑛! lg 𝑛 , 𝑎 = 𝑏!

𝑂 𝑛! , 𝑎 < 𝑏!

𝑂 𝑛"#$!% , 𝑎 > 𝑏!

15

Integer Multiplication

Input: Two 𝑛-digit nonnegative integers, 𝑥 and 𝑦.
Output: The product 𝑥 ⋅ 𝑦
Assumptions: 𝑛 is a power of 2

What is the time complexity using the “grade-school” algorithm.

16

123456789
x 987654321

Multiplication

17

FUNCTION RecursiveIntMult(x, y)
n = NumDigits(x)
IF n == 1, RETURN x * y

a, b = SplitIntIntoHalves(x)
c, d = SplitIntIntoHalves(y)

ac = RecursiveIntMult(a, c)
ad = RecursiveIntMult(a, d)
bc = RecursiveIntMult(b, c)
bd = RecursiveIntMult(b, d)

RETURN 10^n * ac
+ 10^(n/2) * (ad + bc)
+ bd

What is the recurrence?

Constant

Constant

Linear

Multiplication

T(n) ≤ 4 T(n/2) + O(n)

𝑇 𝑛 ≤ 𝑎 𝑇 %𝑛 𝑏 + 𝑂(𝑛!)

T(n) : total amount of operations

a : recursive calls (# of subproblems), always >= 1

b : fraction of input size (shrinkage), always > 1

d : extra work needed to combine, always >= 0

𝑇 𝑛 =
𝑂 𝑛! lg 𝑛 , 𝑎 = 𝑏!

𝑂 𝑛! , 𝑎 < 𝑏!

𝑂 𝑛"#$!% , 𝑎 > 𝑏!

18

Karatsuba

19

FUNCTION Karatsuba(x, y)
n = NumDigits(x)
IF n == 1, RETURN x * y

a, b = SplitIntIntoHalves(x)
c, d = SplitIntIntoHalves(y)

p = a + b
q = c + d

ac = Karatsuba(a, c)
bd = Karatsuba(b, d)

pq = Karatsuba(p, q)

adbc = pq - ac - bd

RETURN 10^n * ac
+ 10^(n/2) * adbc
+ bd

FUNCTION RecursiveIntMult(x, y)
n = NumDigits(x)
IF n == 1, RETURN x * y

a, b = SplitIntIntoHalves(x)
c, d = SplitIntIntoHalves(y)

ac = RecursiveIntMult(a, c)
ad = RecursiveIntMult(a, d)
bc = RecursiveIntMult(b, c)
bd = RecursiveIntMult(b, d)

RETURN 10^n * ac
+ 10^(n/2) * (ad + bc)
+ bd

Karatsuba

20

FUNCTION Karatsuba(x, y)
n = NumDigits(x)
IF n == 1, RETURN x * y

a, b = SplitIntIntoHalves(x)
c, d = SplitIntIntoHalves(y)

p = a + b
q = c + d

ac = Karatsuba(a, c)
bd = Karatsuba(b, d)

pq = Karatsuba(p, q)

adbc = pq - ac - bd

RETURN 10^n * ac
+ 10^(n/2) * adbc
+ bd

FUNCTION RecursiveIntMult(x, y)
n = NumDigits(x)
IF n == 1, RETURN x * y

a, b = SplitIntIntoHalves(x)
c, d = SplitIntIntoHalves(y)

ac = RecursiveIntMult(a, c)
ad = RecursiveIntMult(a, d)
bc = RecursiveIntMult(b, c)
bd = RecursiveIntMult(b, d)

RETURN 10^n * ac
+ 10^(n/2) * (ad + bc)
+ bd

Karatsuba

21

FUNCTION Karatsuba(x, y)
n = NumDigits(x)
IF n == 1, RETURN x * y

a, b = SplitIntIntoHalves(x)
c, d = SplitIntIntoHalves(y)

p = a + b
q = c + d

ac = Karatsuba(a, c)
bd = Karatsuba(b, d)

pq = Karatsuba(p, q)

adbc = pq - ac - bd

RETURN 10^n * ac
+ 10^(n/2) * adbc
+ bd

What is the recurrence?

Constant

Constant

Linear

Linear

Linear

Karatsuba

T(n) ≤ 3 T(n/3) + O(n)

𝑇 𝑛 ≤ 𝑎 𝑇 %𝑛 𝑏 + 𝑂(𝑛!)

T(n) : total amount of operations

a : recursive calls (# of subproblems), always >= 1

b : fraction of input size (shrinkage), always > 1

d : extra work needed to combine, always >= 0

𝑇 𝑛 =
𝑂 𝑛! lg 𝑛 , 𝑎 = 𝑏!

𝑂 𝑛! , 𝑎 < 𝑏!

𝑂 𝑛"#$!% , 𝑎 > 𝑏!

22

Iterative Matrix Multiplication

1. FUNCTION IMM(X, Y)
2. Z = create_new_matrix(X.size, X.size)
3.
4. FOR i IN [0 ..< X.size]
5. FOR j IN [0 ..< X.size]
6. FOR k IN [0 .. < X.size]
7. Z[i][j] += X[i][k] * Y[k][j]
8.
9. RETURN Z

𝑧!" = #
#$%

&

𝑥!#𝑦#"

What are “a”, “b”, and “d”?
23

Recursive Matrix Multiplication
1. FUNCTION RMM(X, Y)
2. IF X.size == 1
3. RETURN X * Y
4.
5. Z = create_new_matrix(X.size, X.size)
6.
7. Z(1,1) = RMM(X(1,1), Y(1,1)) + RMM(X(1,2), Y(2,1)) # Upper left
8. Z(1,2) = RMM(X(1,1), Y(1,2)) + RMM(X(1,2), Y(2,2)) # Upper right
9. Z(2,1) = RMM(X(2,1), Y(1,1)) + RMM(X(2,2), Y(2,1)) # Lower left
10. Z(2,2) = RMM(X(2,1), Y(1,2)) + RMM(X(2,2), Y(2,2)) # Lower right
11.
12. RETURN Z

What are “a”, “b”, and “d”?
24

Quadratic

Element-wise addition of matrices

Matrix Multiplication

Recursive matrix multiplication

𝑇 𝑛 ≤ 𝑎 𝑇 %𝑛 𝑏 + 𝑂(𝑛!)

T(n) : total amount of operations

a : recursive calls (# of subproblems), always >= 1

b : fraction of input size (shrinkage), always > 1

d : extra work needed to combine, always >= 0

𝑇 𝑛 =
𝑂 𝑛! lg 𝑛 , 𝑎 = 𝑏!

𝑂 𝑛! , 𝑎 < 𝑏!

𝑂 𝑛"#$!% , 𝑎 > 𝑏!

25

Strassen’s Matrix Multiplication

1. FUNCTION SMM(X, Y)
2. IF X.size == 1
3. RETURN X * Y
4.
5. PA = SMM(X(1,1), Y(1,2) − Y(2,2))
6. PB = SMM(X(1,1) + X(1,2), Y(2,2))
7. PC = SMM(X(2,1) + X(2,2), Y(1,1))
8. PD = SMM(X(2,2), Y(2,1) − Y(1,1))
9. PE = SMM(X(1,1) + X(2,2), Y(1,1) + Y(2,2))
10. PF = SMM(X(1,2) − X(2,2), Y(2,1) + Y(2,2))
11. PG = SMM(X(1,1) − X(2,1), Y(1,1) + Y(1,2))

What are “a”, “b”, and “d”?

12. Z(1,1) = PE + PD − PB + PF
13. Z(1,2) = PA + PB
14. Z(2,1) = PC + PD
15. Z(2,2) = PA + PE − PC − PG
16.
17. RETURN Z

26

Quadratic

Exercise

Strassen’s matrix multiplication

𝑇 𝑛 ≤ 𝑎 𝑇 %𝑛 𝑏 + 𝑂(𝑛!)

T(n) : total amount of operations

a : recursive calls (# of subproblems), always >= 1

b : fraction of input size (shrinkage), always > 1

d : extra work needed to combine, always >= 0

𝑇 𝑛 =
𝑂 𝑛! lg 𝑛 , 𝑎 = 𝑏!

𝑂 𝑛! , 𝑎 < 𝑏!

𝑂 𝑛"#$!% , 𝑎 > 𝑏!

27

Master Method Proof

Assume
• 𝑇 1 = 𝑂(1) (this is our base-case)
• 𝑇 𝑛 ≤ 𝑎 𝑇 ⁄& ' + 𝑐𝑛!

• n is a power of b

• How did we analyze the running time of merge sort?

(not necessary, but makes the math easier)

28

Generalizing the Recursion Tree Analysis

For merge sort
• What was the # number of subproblems for a given level L?
• What was the size of each of the subproblems at level L?
• How many total levels were there?

29

Merge Sort Exercise

1.How many sub-problems are there at level ‘L’? (Note: the top level is
‘Level 0’, the second level is ‘Level 1’, and the bottom level is ‘Level
log2(n)’)

Answer: 2L

2.How many elements are there for a given sub-problem found in level
‘L’?

Answer: n/2L

3.How many computations are performed at a given level? (Note the cost
of a ‘merge’ operation was 21m)

Answer: 2L 21(n/2L) à 21n
4.What is the total computational cost of merge sort?

Answer: 21n (log2(n) + 1)

30

Generalizing the Recursion Tree Analysis

For merge sort
• What was the # number of subproblems for a given level L?
• What was the size of each of the subproblems at level L?
• How many total levels were there?

In the general case
• What is the # number of subproblems for a given level L?
• What is the size of each of the subproblems at level L?
• How many total levels are there?

31

n

n/b n/b n/b n/b

Level 0

Level 1

Level logbn

1
2

3
a

32

n

n/b n/b n/b n/b

Level 0

Level 1

Level logbn

How many sub-problems at level L?

1

2

3 a

33

n

n/b n/b n/b n/b

Level 0

Level 1

Level logbn

How many elements for each problem at level L?

1

2

3 a

34

n

n/b n/b n/b n/b

Level 0

Level 1

Level logbn

How much work is done outside of recursion?

1

2

3 a

35

n

n/b n/b n/b n/b

Level 0

Level 1

Level logbn

What is the total work done at level L?

1

2

3 a

36

What is the total work done at level L?

Work at Level L
𝑎(𝑐(%𝑛 𝑏()

!

37

What is the total work done at level L?

Work at Level L
𝑎(𝑐(%𝑛 𝑏()

!

Rewrite to group together terms dependent on level
𝑐𝑛!(%𝑎 𝑏!)

(

𝑇 𝑛 =
𝑂 𝑛! lg 𝑛 , 𝑎 = 𝑏!

𝑂 𝑛! , 𝑎 < 𝑏!

𝑂 𝑛"#$!% , 𝑎 > 𝑏!
38

What is the total work done for the tree?

Work at Level L
𝑎(𝑐(%𝑛 𝑏()

!

Rewrite to group together terms dependent on level
𝑐𝑛!(%𝑎 𝑏!)

(

Work done for the entire tree

𝑇 𝑛 ≤ 𝑐𝑛! 7
()*

"#$!&

(%𝑎 𝑏!)
(

39

Work done by a recursive algorithm

𝑇 𝑛 ≤ 𝑐𝑛! %
"#$

%&'"(

('𝑎 𝑏!)
"

40

Let’s look at the cases again

What happens when
𝑎 = 𝑏' : work stays roughly the same at each level

𝑎 < 𝑏' : work goes down at each level

𝑎 > 𝑏' : work goes up at each level

O(work at each level * number of levels)

O(work done at the root)

O(work done at the leaves)

𝑂 𝑛! lg 𝑛

𝑂 𝑛!

𝑂 𝑛"#$!%

41

Review

• We have three difference cases of trees
1. Work is similar at each level
2. Work decreases at each level
3. Work increases at each level

• These tree lead to our three cases for the Master Method
• What really matters is the ratio between a and bd

𝑇 𝑛 =
𝑂 𝑛! lg 𝑛 , 𝑎 = 𝑏!

𝑂 𝑛! , 𝑎 < 𝑏!

𝑂 𝑛"#$!% , 𝑎 > 𝑏!

Case 1

Case 2

Case 3

From where do
we get the cases?

42

A few helpers
#
!$(

#

1 = 𝑘 + 1

#
!$(

#

𝑟! =
𝑟#)% − 1
𝑟 − 1

when r > 1

#
!$(

*

𝑟! =
1

1 − 𝑟
when 𝑟 < 1

𝑙𝑜𝑔+ 𝑛 = 8𝑙𝑜𝑔,(𝑛)
𝑙𝑜𝑔,(𝑎) = 𝑐𝑙𝑜𝑔, 𝑛 = 𝑂(𝑙𝑜𝑔, 𝑛) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑎 ≥ 1

43

Proving the Master Method: Case 1

𝑇 𝑛 ≤ 𝑐𝑛! ∑()*
"#$!&(⁄% '")

(

𝑐𝑛! ∑()*
"#$!&(1)(

𝑐𝑛!(𝑙𝑜𝑔'𝑛 + 1)

Claim: 𝑇 𝑛 = 𝑂(𝑛! lg 𝑛)

1. 𝑎 = 𝑏!

2. ∑+)*, 1 = 𝑘 + 1

44

𝑐𝑛!(𝑙𝑜𝑔"𝑛 + 1) = 𝑂(𝑛! lg 𝑛)

Master Method

𝑇 𝑛 ≤ 𝑎 𝑇 -𝑛 𝑏 + 𝑂(𝑛!)

𝑇 𝑛 =
𝑂 𝑛! lg 𝑛 , 𝑎 = 𝑏!

𝑂 𝑛! , 𝑎 < 𝑏!

𝑂 𝑛"#$!% , 𝑎 > 𝑏!

46

Proving the Master Method: Case 2

𝑇 𝑛 ≤ 𝑐𝑛" ∑#$%
&'(!)(⁄* +")

#

𝑐𝑛" ∑#$%
&'(!)(⁄* +")

#

𝑐𝑛"
(-# !"

)$%&! '()/0

(-# !"
)/0

𝑐𝑛"
0/(-# !"

)$%&! '()

0/(-# !"
)

1. 𝑎 < 𝑏"

2. ∑1$%2 𝑟1 = 3*()/0
3/0

3. Multiply top and bottom by -1

4. We can remove the complex
term from the numerator and
keep the original inequality

47

Proving the Master Method: Case 2

𝑇 𝑛 ≤ 𝑐𝑛! -
-.(0# !"

)

𝑐𝑛!𝑐2

Claim: 𝑇 𝑛 = 𝑂(𝑛!)

⁄% '" is constant with respect to n

48

What can we say about this term?

49

𝑐𝑛!𝑐# = 𝑂(𝑛!)

Master Method

𝑇 𝑛 ≤ 𝑎 𝑇 -𝑛 𝑏 + 𝑂(𝑛!)

𝑇 𝑛 =
𝑂 𝑛! lg 𝑛 , 𝑎 = 𝑏!

𝑂 𝑛! , 𝑎 < 𝑏!

𝑂 𝑛"#$!% , 𝑎 > 𝑏!

50

Proving the Master Method: Case 3

𝑇 𝑛 ≤ 𝑐𝑛! ∑()*
"#$!&(⁄% '")

(

𝑐𝑛! ∑()*
"#$!&(⁄% '")

(

𝑐𝑛!(⁄% '")
"#$!&

𝑐𝑎345! &

Claim: 𝑇 𝑛 = 𝑂(𝑛"#$!%)

1. 𝑎 > 𝑏!

2. Last term of summation is

asymptotically largest:

(⁄% '")
"#$!&

3. Distribute the exponent and
simplify

51

52

𝑐𝑎$%&! ' = 𝑂(𝑛()*!+)

Master Method

𝑇 𝑛 ≤ 𝑎 𝑇 -𝑛 𝑏 + 𝑂(𝑛!)

𝑇 𝑛 =
𝑂 𝑛! lg 𝑛 , 𝑎 = 𝑏!

𝑂 𝑛! , 𝑎 < 𝑏!

𝑂 𝑛"#$!% , 𝑎 > 𝑏!

53

Master Method Summary

1. We analyzed a generalized recursion tree

2. Counted the amount of work done at each level

3. Counted the amount of work done by the tree

4. Found that we have three different types of trees

1. Same rate throughout (case 1: a = bd)

2. Root dominates (case 2: a < bd)

3. Leaves dominate (case 3: a > bd)

5. Saw that these trees relate to the difference master
method cases

𝑇 𝑛 ≤ 𝑎 𝑇 %𝑛 𝑏 + 𝑂(𝑛!)

T(n) : total amount of operations

a : recursive calls (# of subproblems), always >= 1

b : fraction of input size (shrinkage), always > 1

d : extra work needed to combine, always >= 0

𝑇 𝑛 =
𝑂 𝑛! lg 𝑛 , 𝑎 = 𝑏!

𝑂 𝑛! , 𝑎 < 𝑏!

𝑂 𝑛"#$!% , 𝑎 > 𝑏!

54

