Closest Pair Algorithm

https://cs.pomona.edu/classes/cs140/

https://cs.pomona.edu/classes/cs140/

Outline

* Learn more about Divide and Conquer paradigm

* Learn about the closest-pair problem and its O(n Ig n) algorithm
e Gain experience analyzing the run time of algorithms
* Gain experience proving the correctness of algorithms

* Closest Pair

Extra Resources

* Algorithms llluminated: Part 1: Chapter 3

Closest Pair Problem

 Input: P, a set of n points that lie in a (two-dimensional) plane

* Qutput: a pair of points (p, q) that are the “closest”
* Distance is measured using Euclidean distance:

d(p, q) = sqrt((px - ax)*+ (py, - 9,)°)

 Assumptions: None

Closest Pair Problem

e What is the brute force method for t

Can we do better
than O(n?)?

nis search?

* What is the asymptotic running time of the brute force method?

mput pl p2 p3 p4d p5 p6 p7/
One-dimensional closest pair

p6 p4 pl p3 P> p7 p2

How would you find the closest two points?

e Sort by position:O(nlgn) p6 p4 pl p3 p5 p7 p2
e Return the closest two using a linear scan : O(n)

* Total time : O(nIg n) + O(n) = O(n lg n)

Any problems using this approach for the two-dimensional case?
 Sorting does not generalize to higher dimensions!
* How do you sort the points?

1. Which two are closest
on the y-axis?

10

00-

—

1. Which two are closest
on the y-axis?

11

1. Which two are closest
on the y-axis?

12

1. Which two are closest
on the y-axis?

2. Which two are closest
on the x-axis?

13

1. Which two are closest
on the y-axis?

2. Which two are closest
on the x-axis?

14

1. Which two are closest
on the y-axis?

2. Which two are closest
on the x-axis?

3. Which two are closest?

15

1. Which two are closest
on the y-axis?

2. Which two are closest
on the x-axis?

3. Which two are closest?

16

Closet Pair—Two-Dimensions

1. Create a copy of the points (we now have two separate copies of P)
1. Sort by x-coordinate

2. Sort other by y-coordinate O(nlgn)

Now we know we can’t do better than O(n Ig n)

17

P : [po(1,10), p1(2,8), p2(7,3), p3(5,7), 14(8,4), p5(3,5), p6(16,9), p7(9,1)]

Sorted by x coordinate

Px : [po(1,10), p1(2,8), p5(3,5), p3(5,7), p2(7,3), p"(8,4), p7(9,1), p6(16,9)]

Sorted by y coordinate

Py : [p7(9,1), p2(7,3), 04(8,4), p5(3,5), p3(5,7), pi(2,8), p6(1e,9), po(1,10)]

(909

-
® 6COe

o o900 _ 90U 00

18

Closet Pair—Two-Dimensions

1. Create a copy of the points (we now have two separate copies of P)
1. Sort by x-coordinate
Y . O(n Ig n)
2. Sort other by y-coordinate
e Can we still end up with a O(n Ig n) algorithm for finding the closest pair?
* Does the closeness of two points on one axis matter?

19

1.
2.
3.
4

FUNCTION FindClosestPair(points)
points_x = copy_and_sort_by x(points)
points_y = copy_and_sort_by y(points)
RETURN ClosestPair(points_x, points_y)

20

Closet Pair—Two-Dimensions

1. Create a copy of the points (we now have two separate copies of P)
1. Sort by x-coordinate

2. Sort other by y-coordinate O(nlgn)

e Can we still end up with a O(n Ig n) algorithm for finding the closest pair?
* Does the closeness of two points on one axis matter?

2. Apply the Divide-and-Conquer method

21

Divide-and-Conquer
into smaller subproblems

the subproblems via recursive calls
3. COMBINE solutions from the subproblems

* How would you divide the problems?

. Which two are closest
on the y-axis?

. Which two are closest
on the x-axis?

. Which two are closest?

. How would you divide
the search space?

23

1. Which two are closest
on the y-axis?

2. Which two are closest
on the x-axis?

3. Which two are closest?

This is the x-value
This is not the average x-value

24

OCoOoONOUT R, WN M-

R R R R R
A WNEPES -

FUNCTION ClosestPair(px, py)
n = px.length

IF n ==

1. FUNCTION FindClosestPair(points)

2 points_x = copy_and_sort_by_x(points)
3. points_y = copy_and_sort_by_y(points)
4 RETURN ClosestPair(points_x, points_y)

RETURN px[0], px[1], dist(px[0], pxI[1])

pl, qgl, dl

pr, qr, dr

ClosestPair(left_px, left_py)

How do we create these arrays?

ClosestPair(right_px, right_py)

25

P : [po(1,10), pl 7,3), p3(5,7), p"(8,4), p5(3 9,9), p7(9,1)]
Sorted,b nordinate
PXx

Sorted by y coordinate

Py : [p7(9,1), p2(7,3), 04(8,4), p5(3,5), p3(5,7), p1i(2,8), p6(1e,9), po(1,10)]

o 1. How do we create left px?
2. How do we create right px?
O 3. How do we create left_py? i
@

4. How do we create right py?

® 000 _ U e

26

OCoOoONOUT R, WN M-

B
NS -

FUNCTION Clo
n = px.le

IF n ==
RETURN

left_px =

sestPair(px, py)
ngth

px[0], px[1], dist(px[0], pxI[1])

px[0 ..< n//2]

[p FOR p IN py IF p.x < px[n//2].x]

L = ClosestPair(left_px, left_py)

px[n//2 ..< n]

Median x value

[p FOR p IN py IF p.x = px[n//2].x]

r = ClosestPair(right_px, right_py)

What is the running time of these operations?

27

Any problems o0
with our current
approach?

OCOoOONOUTESWN =

R R R RPRRRRPE
NOUPDMRWNRPRO-

FUNCTION ClosestPair(px, py)
n = px.length
IF n ==
RETURN px[0], px[1], dist(px[0], px[1])

left_px = px[0 ..< n//2]
left_py = [p FOR p IN py IF p.x < px[n//2].x]
pl, gl, dl = ClosestPair(left_px, left_py)

What time complexity does this

right px = px[n//2 ..< n] process need such that the overall
right_py = [p FOR p IN.py]_:F P algorithm runs in O(n Ig n)?
pr, qr, dr = ClosestPair(rig Hint: think about Merge Sort.
d = min(dl, dr)

ps, qs, ds = ClosestSplitPair(px, py, d)

RETURN Closest(pl, ql, dl, pr, qgr, dr, ps, qs, ds)

29

Exercise Question 1

1. What must be the running time of clcsestsplitrairifthe closestprair algorithm is
to have a running time of O(n Ig n)?

FUNCTION ClosestPair (px, py)
n = px.length
IF n ==
RETURN px[0], px[1l], dist(px[0], px[1])

left px = px[0 ..< n//2]
left py = [p FOR p IN py IF p.x < px[n//2].x]
pl, ql, dl = ClosestPair (left px, left py)

right px = px[n//2 ..< n]
right py = [p FOR p IN py IF p.x 2 px[n//2].x]
pr, qr, dr = ClosestPair (right px, right py)

d = min(dl, dr)
ps, gqs, ds = ClosestSplitPair (px, py, d)

RETURN Closest(pl, gql, dl1, pr, qr, dr, ps, gs, ds)

Merge Sort and It’s Recurrence

FUNCTION RecursiveFunction(some_input)
IF base_case:

RETURN base_case_work(some_input)

one
two

RecursiveFunction(some_input.first_half)
RecursiveFunction(some_input.second_half)

one_and_two = Combine(one, two)

RETURN one_and_two

32

OCOoOONOUTESWN =

R R R RPRRRRPE
NOUPDMRWNRPRO-

FUNCTION ClosestPair(px, py)
n = px.length
IF n ==
RETURN px[0], px[1], dist(px[0], px[1])

left_px = px[0 ..< n//2]
left_py = [p FOR p IN py IF p.x < px[n//2].x]
pl, gl, dl = ClosestPair(left_px, left_py)

right_px = px[n//2 ..< n]

right_py = [p FOR p IN py IF p. How do we find the
pr, qr, dr = ClosestPair(right_grgloaS e E it Elas ol lerials
d = min(dl, dr) two sides?

ps, qs, ds = ClosestSplitPair(px, py, d)

RETURN Closest(pl, ql, dl, pr, qgr, dr, ps, qs, ds)

33

Key |dea

* In ClosestSplitPair we only need to check for pairs that are
closer than those found in the recursive calls to ClosestPair

* This is easier () than trying to find the closest split pair without
any extra information!

FUNCTION ClosestSplitPair(px, py, d)
n = px.length
x_median = px[n//2].x

middle py = [p FOR p IN py IF x_median - d < p.x < x_median + d]

closest_d = INFINITY, closest_p = closest_q = NONE
FOR i IN [0 ..< middle_py.length - 1]
FOR j IN [1 ..= min(7, middle_py.length - 1i)]
p = middle_pyl[il, q = middle_pyl[i + jl
IF dist(p,) < closest_d
closest_d = dist(p, q)
closest_p = p, closest_qg = q

RETURN closest_p, closest_qg, closest_d

At most 6 points vertically “between” the two closest points.

35

Exercise Question 2

2. What is the running time of the nested for-loop (looping over j)?

FUNCTION ClosestSplitPair (px, py, d)
n = px.length
x median = px[n//2].x
middle py = [p FOR p IN py IF x median - d < p.xXx < X median + d]

closest d = INFINITY, closest p = closest q = NONE
FOR i IN [0 ..< middle py.length - 1]
FOR j IN [1 ..= min(7, middle py.length - i)]
p = middle py[i], g = middle py[i + j]
IF dist(p, q) < closest d
closest d = dist(p, q)
closest p = p, closest q = q

RETURN closest p, closest q, closest d

Loop Unrolling

FOR j IN [1

IF dist (p,

.= min (7, middle py.length - 1i)]
p = middle pyl[i], g = middle_py[i + J]

q) < closest d

closest d = dist(p, Q9)
closest p = p, closest g = g

IF dist (middle py[i], middle py[1 + 1]) < closest d

closest d =

closest p
closest g

IF dist (middle

closest d
closest p
closest g

dist (middle py[i], middle pyl[i + 1])
middle py[i]
middle py[i1i + 1]

_py[i], middle_py[i + 2]) < closest d
dist (middle py[i], middle pyl[i + 2])
middle py[i]

middle py[i + 2]

37

middle py

FUNCTION ClosestSplitPair(px, py, d) ‘
n = px.length
x_median = px[n//2].x ‘ ‘
middle_py = [p FOR p IN py
IF x_median - d < p.x < x_median + d] pl

closest_d = INFINITY, closest_p = closest_q = NONE dl ‘
FOR i IN [0 ..< middle_py.length - 1] ‘
FOR j IN [1 ..= min(7, middle_py.length - i)] ‘ ql
p = middle_py[il, q = middle_pyl[i + j]
IF dist(p, q) < closest_d ‘ “

closest_d
closest_p

dist(p, q)
p, closest_qgq = q

RETURN closest_p, closest_q, closest_d
d d

X_median

38

Theorem for correctness of ClosestPair

Theorem:

Provided a set of n points called P, the CLlosestPair algorithm find
the closest pair of points according to their pairwise Euclidean
distances.

ClosestPair finds the closest pair

letp € , q E be a split pair withd(p, gq) < d
Then
A. pandg€ , and

B. pand g are at most 7 positions apart in

If the claim is true:

Corollary 1: If the closest pair of P is in a split pair, then our
ClosestSplitPair procedure finds it.

Corollary 2: ClosestPairis correct and runsin O(n Ig n) since it has the
same recursion tree as merge sort

40

Proof—Part A

letp € left, q € right beasplitpairwithd(p, q) < d niddle py

Than .
A. pandgemiddle py,and - °

. -
N
®
If p=(x1,yl) € left AND q = (x2,y2) € right AND d(p,q) < d - ql
-

Then G ¢
x median - d < %1 < x median and P

x median S %2 < x median + d $

d d

X_median

Otherwise, p and g would not be the closest pair with d(p, q) < d

Proof—Part A

letp € left, q € right beasplitpairwithd(p, q) < d niddle py

Than .
A. pandgemiddle py,and - °

. -
N
®
If p=(x1,yl) € left AND q = (x2,y2) € right AND d(p,q) < d - ql
-

Then G ¢
x median - d < %1 < x median and P

x median S %2 < x median + d $

d d

X_median

Otherwise, p and g would not be the closest pair with d(p, q) < d

ClosestPair finds the closest pair

letp € left, g € right be asplit pairwithd(p, gq) < d
Then
A. pandg€emiddle py, and

B. pand g are at most 7 positions apartinmiddle p

If the claim is true:

Corollary 1: If the closest pair of P is in a split pair, then our
ClosestSplitPair procedure finds it.

Corollary 2: ClosestPairis correct and runsin O(n Ig n) since it has the
same recursion tree as merge sort

43

middle py

d d

Xx_median

44

middle py

d d

Xx_median

45

middle py

d d

Xx_median

46

middle py

d d

Xx_median

47

middle py

d d

Xx_median

48

middle py

d d

Xx_median

49

middle py

d d

Xx_median

50

middle py

d d

Xx_median

51

X-value of middle point

52

X-value of middle point

53

X-value of middle point

54

X-value of middle point

55

X-value of middle point

56

X-value of middle point

57

|
X-value of middle point

middle py

Proof—Part B

p and g are at most 7 positions apartinmiddle py
p‘.q -

dd

X_median

d

59

X_median

middle py

Proof—Part B

p and g are at most 7 positions apartinmiddle py

p‘.q -

How many other points can possibly be in this area? -

dd

X_median

d

min[yl, y2]

60

X_median

Proof—Part B . .

p and g are at most 7 positions apart

min[y1, y2]

| n d Xx_median

Lemma 1: All points of with a y-coordinate between those of p and q lie
within those 8 boxes.

Proof:

1. First, recall that the y-coordinate of p, q differs by less than d.

2. Second, by definition of , all have an x-coordinate
between x_median +=d.

Proof—Part B . .

p and g are at most 7 positions apart

min[y1, y2]

inmiddle py ; «_median

Lemma 1: All points of middle py with a y-coordinate between those of p and q lie
within those 8 boxes.

Lemma 2: At most one point of P can be in each box.

Proof: By contradiction. Suppose points a and b lie in the same box. Then

1. aand Db are either both in L or both in R | 1l 5= selaidele eulelar iz o) e e 7= s St =e
2. d(a,b)<=d/2 sgrt(2) < d

62

Max distance within box is d/\/i

¥

X median

63

ClosestPair finds the closest pair

letp € , q E be a split pair withd(p, gq) < d
Then
A. pandg€ , and

B. pand g are at most 7 positions apart in

If the claim is true:

Corollary 1: If the closest pair of P is in a split pair, then our
ClosestSplitPair procedure finds it.

Corollary 2: ClosestPairis correct and runsin O(n Ig n) since it has the
same recursion tree as merge sort

64

Closest Pair

Copy P and sort one copy by x and the other copy by y in
Divide P into a left and right in
Conquer by recursively searching and

B W

Look for the closest pair in middle_py in

* Must filter by x
* And scan through middle_py by looking at adjacent points

B0 FUNCTION ClosestPair(px, py) T(n)
= px. length

2 T(n/2) + 0(n)
O(n 1g n)

. IF n ==
.. RETURN px[0@], px[1], dist(px[0], pxI[1])

BB left_px = px[0 ..< n//2]
e left_py = [p FOR p IN py IF p.x < px[n//2].x]
et al, di = ClosestPair(left_px, left_py)

BB right_px = px[n//2 ..< n]
B0 right_py = [p FOR p IN py IF p.x = px[n//2].x]
&) pr, gr, dr = ClosestPair(right_px, right_py)

= min(dl, dr)
.ps, qs, ds = ClosestSplitPair(px, py, d)

' RETURN Closest(pl, ql, di, pr, qr, dr, ps, gs, ds)

66

2 T(n/2) + 0(n)

FUNCTION MergeSort(array) T(n) o(n 1g n)

2 n = array. length
) IF n == 1

o(1) RETURN array
B0 left_sorted = MergeSort(array[0 ..< n//2])
MY right_sorted = MergeSort(arrayln//2 ..< nl)

array_sorted = Merge(left_sorted, right_sorted)

RETURN array_sorted

67

T(n) 2 T(n/2) + 0(n)

O(n 1g n)

BB FUNCTION RecursiveFunction(some_input)
IF base_ case:

Usually 0(1)

RETURN base_case_work(some_input)

Two recursive calls, each with half the data
YWl one = RecursiveFunction(some_input.first_half)
uAN two RecursiveFunction(some_input.second_half)

Combine results from recursive calls (usually 0(n))
one_and_two = Combine(one, two)

RETURN one_and_two

68

Supplementary slides showing an example execution.
16
14
1245

10

10

12

14

16

69

N & ® ® B BN R O3

16

o L Y [[
.. 1 O I O O N
. N I I (5
8
6
4
2
0

0 2 4 6 8 10 12 14 16

0 2 4 6 8 10 12 14 16

70

16

12

10

16

10

12

14

71

72

73

66666

Closest Split Pair

74

88888

88888

12

10

14

12

10

12

12

10

10

75

16

12

12

10

o
o 12 14 16

2 4 6 8 10

N & ® ® 3 R BB

B
>

N & ® ® B N B O3

N & ® ® 3 B B O3

76

12

10

77

78

12

10

12

10

79

16

14

12

(=}
=

10

80

@® © 9w

14

12

10

©

16

12

12

10

12

10

81

e

Closest on Left

15 % a
B ® B P
"
3 e °
3
10 a 1#]
& &
@
@
Py]
5 ® e
L o
13
0 5 10

20

10

20

Closest is Split

15

20

20

15

10

Closest on Right

15

83

20

Closest on Left

15

20

84

Closest on Left

15

85

Closest on Left

15 % a
B ® B P
"
3 e °
3
10 a 1#]
& &
@
@
Py]
5 ® e
L o
13
0 5 10

20

10

20

Closest is Split

15

20

20

15

10

Closest on Right

15

86

20

Closest is Split

15

10

15

87

Closest is Split

88

