Merge Sort

https://cs.pomona.edu/classes/cs140/

Outline

Topics and Learning Objectives

- Learn how the merge sort algorithm operates
- Become aware of the "Divide and Conquer" algorithmic paradigm by analyzing merge sort

Exercise

- Recursion tree

Extra Resources

- CLRS (Cormen Book): Chapter 4
- Algorithms Illuminated: Part 1: Chapter 1

Divide and Conquer

- This is an algorithm design paradigm
- Most divide and conquer algorithms are recursive in nature
- The basic idea is to break the problem into easier-to-solve subproblems
- What's easier to do:
- Sort 0, 1, or 2 numbers, or
- Sort 10 numbers

Merge Sort

- This is a "Divide and Conquer"-style algorithm
- Improves over insertion sort in the worst case
- Unlike insertion sort, the best/average/worst case running times of merge sort are all the same

FUNCTION MergeSort(array)
What is the running time of each line?
$\mathrm{n}=$ array. length
IF $n=1$
TTYN
RETURN array
left_sorted = MergeSort(array[0."< n//2]) right_sorted = MergeSort(array[n//2 ..< n])
array_sorted = Merge(left_sorted, right_sorted)

RETURN array_sorted

FUNCTION MergeSort(array)
What is the running time of each line?
o(1) $\mathrm{n}=$ array.length

O(1)
O(1)

IF $n=1$
RETURN array

$$
\begin{aligned}
& \text { O(?) left_sorted = MergeSort(array[0 " }<\mathrm{n} / / 2]) \\
& \text { O(?) right_sorted }=\text { MergeSort(array[n//2 . . }<\mathrm{n}])
\end{aligned}
$$

array_sorted = Merge(left_sorted, right_sorted)

RETURN array_sorted

T(n) FUNCTION MergeSort(array)
What is the running time of each line?
o(1) n = array. length
IF $\mathrm{n}=1$
RETURN array
$\mathrm{T}(\mathrm{n} / 2)$ left_sorted = MergeSort(array[0..< $\mathrm{n} / / 2])$
$\mathrm{T}(\mathrm{n} / 2)$ right_sorted = MergeSort(array[n//2 . . $<\mathrm{n}])$
array_sorted = Merge(left_sorted, right_sorted)

RETURN array_sorted

T(n) FUNCTION MergeSort(array)
What is the running time of each line?
o(1) $\mathrm{n}=$ array. length
o(1) IF $\mathrm{n}=\mathbf{1}$
RETURN array
$\mathrm{T}(\mathrm{n} / 2)$ left_sorted = MergeSort(array[0 . $<\mathrm{n} / / 2$])
$\mathrm{T}(\mathrm{n} / 2)$ right_sorted $=$ MergeSort(array[n//2 ..< n])

O(?) array_sorted = Merge(left_sorted, right_sorted)
o(1) RETURN array_sorted

T(n) FUNCTION MergeSort(array)
What is the running time of each line?
o(1) $\mathrm{n}=$ array. length

RETURN array

$$
\begin{aligned}
T(n) & =2 T(n / 2)+0(?)+40(1) \\
& =2 T(n / 2)+0(?)
\end{aligned}
$$

T(n/2) left_sorted $=$ MergeSort(array[0 . . $<$ n//2])
T(n/2) right_sorted = MergeSort(array[n//2 : .< n])
o(?) array_sorted = Merge(left_sorted, right_sorted)
o(1) RETURN array_sorted

Recurrence Equation

$$
\begin{aligned}
\mathrm{T}(\mathrm{n}) & =2 \mathrm{~T}(\mathrm{n} / 2)+0(?)+40(1) \\
& =2 T(\mathrm{n} / 2)+0(?)
\end{aligned}
$$

Merge Sort

Merge Sort
Write the Merge routine

FUNCTION Merge(one, two)
out [one.length + two.length] \# Declare array

FUNCTION Merge(one, two)
out [one.length + two.length]
i = j = k = 0
WHILE k < out. length
IF one[i] < two[j]

Ignoring
invalid indices

$$
\text { out }[k]=\text { one[i] }
$$

$$
i=i+1
$$

ELSE

$$
\begin{aligned}
& \quad \text { out }[k]=\text { two }[j] \\
& j=j+1 \\
& k=k+1
\end{aligned}
$$

What is the total running time?

FUNCTION Merge(one, two)
out [one.length + two.length]
i = j = k = 0
WHILE k < out.length
IF one[i] < two[j]
out[k] = one[i]
i = i + 1
ELSE

$$
\begin{aligned}
& \text { out }[k]=\text { two }[j] \\
& j=j+1 \\
& k=k+1
\end{aligned}
$$

Total Running Time 4 3
$2(m+1)$
3 m
3 m
2 m
0
3 m
2 m
2 m

$\mathrm{T}_{\text {merge }}(\mathrm{m})=12 \mathrm{~m}+9$

Simplifying the running time

- We don't need to be exactly correct with the running time of Merge
- We will eventually remove lower order terms anyway
- Let's simplify the expression a bit:

$$
\begin{aligned}
& T_{\text {merge }}(m)=12 m+9 \\
& T_{\text {merge }}(m) \leq 12 m+9 m \\
& T_{\text {merge }}(m) \leq 21 m
\end{aligned}
$$

Merging

We have an idea of the cost of an individual call to merge:

$$
T(m) \leq 21 m
$$

What else do we need to know to calculate the total time of MergeSort?

1. How many times do we merge in total?
2. What is the size of each merge? (In other words: What is m ?)

T(n) FUNCTION MergeSort(array)
What is the running time of each line?
o(1) $\mathrm{n}=$ array. length

RETURN array

$$
\begin{aligned}
T(n) & =2 T(n / 2)+0(?)+40(1) \\
& =2 T(n / 2)+0(?)
\end{aligned}
$$

T(n/2) left_sorted $=$ MergeSort(array[0 . . $<$ n//2])
T(n/2) right_sorted = MergeSort(array[n//2 : .< n])
o(?) array_sorted = Merge(left_sorted, right_sorted)
o(1) RETURN array_sorted

T(n) FUNCTION MergeSort(array)
What is the running time of each line?
o(1) $\mathrm{n}=$ array. length

RETURN array

$$
\begin{aligned}
T(n) & =2 T(n / 2)+0(n)+4 O(1) \\
& =2 T(n / 2)+0(n)
\end{aligned}
$$

T(n/2) left_sorted $=$ MergeSort(array[0 ."< n//2])
T(n/2) right_sorted = MergeSort(array[n//2 : .< n])

O(n) array_sorted = Merge(left_sorted, right_sorted)
o(1) RETURN array_sorted

How many times do we call Merge?

How many times do we call Merge?

Exercise

How many sub-problems are there at level L? The top level is Level 0 , the second level is Level 1 , and the bottom level is Level $\log _{2}(\mathrm{n})$

Answer: $2^{\text {L }}$
How many elements are there for a given sub-problem found in level L?

Answer: $\mathrm{n} / 2^{\mathrm{L}}$
How many computations are performed at a given level? The cost of a Merge was 21m.

Exercise

How many sub-problems are there at level L? The top level is Level 0 , the second level is Level 1 , and the bottom level is Level $\log _{2}(n)$

Answer: $2^{\text {L }}$
How many elements are there for a given sub-problem found in level L?

Answer: $n / 2^{\text {L }}$

How many computations are performed at a given level? The cost of a Merge was 21m.

$$
\text { Answer: } 2^{\llcorner } 21\left(n / 2^{\llcorner }\right) \rightarrow 21 n
$$

Level $\log _{2}(n)=3$

$$
\text { Answer: } 21 \mathrm{n}\left(\log _{2}(\mathrm{n})+1\right)
$$

Exercise

How many sub-problems are there at level L? The top level is Level 0 , the second level is Level 1 , and the bottom level is Level $\log _{2}(\mathrm{n})$

Answer: $2^{\text {L }}$
How many elements are there for a given sub-problem found in level L?

Answer: $\mathrm{n} / 2^{\text {L }}$

How many computations are performed at a given level? The cost of a Merge was 21 m .

$$
\text { Answer: } 2^{\llcorner } 21\left(n / 2^{L}\right) \rightarrow 21 n
$$

What is the total computational cost of merge sort?
Answer: 21n $\left(\log _{2}(n)+1\right)$

Merge Sort

Divide and Conquer

- constantly halving the problem size and then merging

Total running time of roughly $21 n \log _{2}(n)+21 n$
Compared to insertion sort with an average total running time of $1 / 2 \mathrm{n}^{2}$

- For small values of n, insertion sort is better

Which algorithm is better?

Constants

