
Asymptotic Notation (Big O)
https://cs.pomona.edu/classes/cs140/

https://cs.pomona.edu/classes/cs140/

Outline

Topics and Learning Objectives
• Discuss total running time
• Discuss asymptotic running time
• Learn about asymptotic notation

Exercise
• Running time

4

Extra Resources

• Chapter 3: asymptotic notation

5

Comparing Algorithms and Data Structures

We like to compare algorithms and data structures
• Speed
• Memory usage

We don’t always need to care about little details

We ignore some details anyway
• Data locality
• Differences among operations

6

Constants

0.01𝑛!

100𝑛𝑙𝑜𝑔2(𝑛)

7

Big-O Example Code (ODS 1.3.3)

function_one has a total running time of 2𝑛log𝑛 + 2𝑛 - 250
a = function_one(input_one)

function_two has a total running time of 3𝑛log𝑛 + 6𝑛 + 48
b = function_two(input_two)

• The total running time of the code above is:

2𝑛 log 𝑛 + 2𝑛 − 250 + 1 + 3𝑛 log 𝑛 + 6𝑛 + 48 + 1

5𝑛 log 𝑛 + 8𝑛 − 200

8

Big-O Example Math (ODS 1.3.3)

5𝑛 log 𝑛 + 8𝑛 − 200

• We don’t care about most of these details
• We want to be able to quickly glance at the running time of an

algorithm and know how it compares to others
• So we say the following

5𝑛 log 𝑛 + 8𝑛 − 200 = 𝑂(𝑛 log 𝑛)

9

Big-O (Asymptotic Running Time)

T(n) = O(f(n))

If and only if (iff) we can find values for c, n0 > 0, such that

T(n) ≤ c f(n), where n ≥ n0

Note: c, n0 cannot depend on n

10

Searching an array for a given number?

Write an algorithm (in pseudocode): What is the total running time?

11

Searching an array for a given number?

What is the asymptotic running time? T(n) = 2n + 1

T(n) ≤ c f(n), where n ≥ n0

12

Search two separate arrays (sequentially) for a given number?

Write an algorithm (in pseudocode): What is the total running time?

13

Search two separate arrays (sequentially) for a given number?

What is the asymptotic running time? T(n) = 4n + 3

T(n) ≤ c f(n), where n ≥ n0

14

Searching two arrays for any common number?

Write an algorithm (in pseudocode): What is the total running time?

15

Searching two arrays for any common number?

What is the asymptotic running time? T(n) = 2n2 + 2n + 1

T(n) ≤ c f(n), where n ≥ n0

16

Searching two arrays for any common number?

What is the asymptotic running time? T(n) = 2n2 + 2n + 1

T(n) ≤ c f(n), where n ≥ n0

17

Searching a single array for duplicate numbers?

Write an algorithm (in pseudocode): What is the total running time?

18

Searching a single array for duplicate numbers?

What is the asymptotic running time? T(n) = 21nlgn + 25n + 1

T(n) ≤ c f(n), where n ≥ n0

19

Searching a single array for duplicate numbers?

What is the asymptotic running time? T(n) = 21nlgn + 25n + 1

T(n) ≤ c f(n), where n ≥ n0

20

Big-O Examples

• Claim: 2n+10 = O(2n)

T(n) = O(f(n))
If and only if we can find values for c, n0 > 0, such that

T(n) ≤ c f(n), where n ≥ n0
Note: c, n0 cannot depend on n

21

Big-O Examples

• Claim: 210n = O(2n)

T(n) = O(f(n))
If and only if we can find values for c, n0 > 0, such that

T(n) ≤ c f(n), where n ≥ n0
Note: c, n0 cannot depend on n

22

Big-O Examples

• Claim: for every k >= 1, nk is not O(nk-1)

T(n) = O(f(n))
If and only if we can find values for c, n0 > 0, such that

T(n) ≤ c f(n), where n ≥ n0
Note: c, n0 cannot depend on n

23

Θ Examples

• Claim: 21n (log2(n) + 1) = Θ(nlog2n)

T(n) = Θ(f(n))
If and only if we can find values for c, n0 > 0, such that

c1 f(n) ≤ T(n) ≤ c2 f(n), where n ≥ n0
Note: c1, c2, n0 cannot depend on n

24

Other Notations

• Big-O (≤) : T(n) = O(f(n)) if T(n) ≤ c f(n), where n ≥ n0

• Big-Omega (≥) : T(n) = Ω(f(n)) if T(n) ≥ c f(n), where n ≥ n0

• Theta (=) : T(n) = Θ(f(n)) if T(n) = O(f(n)) and T(n) = Ω(f(n))

c1 f(n) ≤ T(n) ≤ c2 f(n), where n ≥ n0

25

Other Notations

• Big-O (≤) : T(n) = O(f(n)) if T(n) ≤ c f(n), where n ≥ n0

• little-o (<)

• Big-Omega (≥) : T(n) = Ω(f(n)) if T(n) ≥ c f(n), where n ≥ n0

• Little-omega (>)

26

Θ Examples

• Claim: 21n (log2(n) + 1) = Θ(nlog2n)

T(n) = Θ(f(n))
If and only if we can find values for c, n0 > 0, such that

c1 f(n) ≤ T(n) ≤ c2 f(n), where n ≥ n0
Note: c1, c2, n0 cannot depend on n

27

Θ Examples

• Claim: 21n (log2(n) + 1) = Θ(nlog2n)

T(n) = Θ(f(n))
If and only if we can find values for c, n0 > 0, such that

c1 f(n) ≤ T(n) ≤ c2 f(n), where n ≥ n0
Note: c1, c2, n0 cannot depend on n

28

Θ Examples

• Claim: 21n (log2(n) + 1) = Θ(nlog2n)

T(n) = Θ(f(n))
If and only if we can find values for c, n0 > 0, such that

c1 f(n) ≤ T(n) ≤ c2 f(n), where n ≥ n0
Note: c1, c2, n0 cannot depend on n

29

c2 f(n)

c1 f(n)

T(n)

n0

𝑂 𝑓 𝑛 : 𝑇 𝑛 ≤ 𝑐!𝑓(𝑛)

Ω 𝑓 𝑛 : 𝑇 𝑛 ≥ 𝑐"𝑓(𝑛)

Θ 𝑓 𝑛 : 𝑐"𝑓 𝑛 ≤ 𝑇 𝑛 ≤ 𝑐!𝑓(𝑛)

30

What is f(n)?

What are
good values
for:
• c
• n0

31

Insertion Sort vs Merge Sort

5.5 hours 10 million numbers 20 minutes
23 days 100 million numbers 4 hours

Computer A :
Insertion Sort

10,000 MIPS
2n2

Computer B :
Merge Sort

10 MIPS
50 n lg n

32

Simplifying the Comparison

• Why can we remove leading coefficients?

• Why can we remove lower order terms?

• They are both insignificant when compared with the growth of the
function.
• They both get factored into the constant “c”

33

