Asymptotic Notation (Big O)

https://cs.pomona.edu/classes/cs140/

Outline

Topics and Learning Objectives

- Discuss total running time
- Discuss asymptotic running time
- Learn about asymptotic notation

Exercise

- Running time

Extra Resources

- Chapter 3: asymptotic notation

Comparing Algorithms and Data Structures

We like to compare algorithms and data structures

- Speed
- Memory usage

We don't always need to care about little details

We ignore some details anyway

- Data locality
- Differences among operations

Big-O Example Code (ODS 1.3.3)

```
# function_one has a total running time of 2nlogn + 2n - 250
```

a = function_one(input_one)
\# function_two has a total running time of $3 n l o g n+6 n+48$
b = function_two(input_two)

- The total running time of the code above is:

$$
2 n \log n+2 n-250+1+3 n \log n+6 n+48+1
$$

$$
5 n \log n+8 n-200
$$

Big-O Example Math (ODS 1.3.3)

$$
5 n \log n+8 n-200
$$

- We don't care about most of these details
- We want to be able to quickly glance at the running time of an algorithm and know how it compares to others
- So we say the following

$$
5 n \log n+8 n-200=O(n \log n)
$$

Big-O (Asymptotic Running Time)

$$
T(n)=0(f(n))
$$

If and only if (iff) we can find values for $c, n_{0}>0$, such that

$$
T(n) \leq c f(n) \text {, where } n \geq n_{\theta}
$$

Note: c, n_{0} cannot depend on n
\Rightarrow Searching an array for a given number?
Write an algorithm (in pseudocode): What is the total running time?
Function Find Mum (array (hum)
\rightarrow For val In array
whet is

$\rightarrow\{$ Return False $T(n)=2 n+1$
$\longrightarrow \longrightarrow^{\top}(n) \leq c f(n)$, where $n \geq n_{\theta}$
Searching an array for a given number?
What is the asymptotic running time $T(n)=2 n+1$

$$
\begin{aligned}
& T(n)=O(n) \\
& T(n)=O(n) \\
& \text { * } T(n) \leq c n \quad \forall n \geq n_{0} \\
& 2 n+1 \leq C n \quad \forall n \cdot \frac{1}{2} \\
& 2 n+1 \leq 2 n+n<n \geqslant+\left(\begin{array}{l}
c=3 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

Search two separate arrays (sequentially) for a given number?
Write an algorithm (in pseudocode):
Function FindNum In $2\left(\begin{array}{l}\text { What is the total running times } \\ \text { arran, array }\end{array}\right.$
return Find Nom (aral, nom) (OR)

$$
n=\max \text { (array } \text { length, arrant. length) }
$$

$(2)+(1)+(2 n+2)+(0)+1$
$T(n) \leq c f(n)$, where $n \geq n_{0}$
Search two separate arrays (sequentially) for a given number?
What is the asymptotic running time? $T(n)=4 n+3=O(n)$
$T(n)=O(n)$

$$
\begin{aligned}
& 4 n+3 \leq c n \quad \forall n \geq n_{0} \\
& \underbrace{4 n+30^{2} \leq 4 n+3 n} \leq c n \quad \forall n \geq n_{0} \\
& \text { 時 }+3 \leq 5{ }^{4}+3 n \text { (6) } 4 n+3 n \leq c n \\
& \text { (1) } 3 \leq 3 n \rightarrow n \geq \\
& c=7, n_{0}=1
\end{aligned}
$$

Naive \quad Hash Table \rightarrow OCh) Searching two arrays for any common number?

n For vail In array l
n If Find "y arrayed, val) $(2 n+1)$
Return True
Return False

$$
\begin{aligned}
T(n) & =n+n(2 n+1)+1 \\
& =2 n^{2}+n^{2 n}+n+1
\end{aligned}
$$

$$
T(n) \leq c f(n) \text {, where } n \geq n_{0}
$$

Searching two arrays for any common number?
What is she agympoticicumning tine? $T(n)=n^{2}+2 n+1$

$$
\begin{aligned}
& T(n) \neq 0(n) \\
& \frac{2 n^{2}}{n}+\frac{2 n}{n}+\frac{1}{n} \leq \frac{c n}{n} \quad \forall \underbrace{n \geq n_{0}} \\
& \sqrt{v}, 000,000 \\
& 2 n+2+\frac{1}{n}
\end{aligned}
$$

$T(n) \leq c \underbrace{f(n)}$, where $n \geq n_{0}$
Searching two arrays for any common number?
What is the asymptotic running time? $T(n)=2 n^{2}+2 n+1$

$$
\left.\begin{array}{l}
T(n)=0\left(n^{2}\right) \\
2 n^{2}+2 n+1 \leq C n^{2} \\
2 n^{2}+2\left(n+(1) \leq 2 n^{2}+2 n^{2}+1 n^{2} \leq C n^{2}\right.
\end{array} \forall n \geq n_{0}\right)
$$

Searching a single array for duplicate numbers?

Write an algorithm (in pseudocode):
What is the total running time?
Function FindDuplicale (assay)

$$
\begin{aligned}
& \text { action FindDuplicale (array) } \\
& \text { array }=\text { Merge Sort Corray) } 2 \ln \lg n+2 \ln
\end{aligned}
$$

For i In $[1 . . c \text { arran. length }\}^{2} แ 1 n$
If $\operatorname{array}[\underline{L}[i-1]==\operatorname{arra}[i]$ < $3 n$
Return Tine
Return False
$2 \ln \lg n+2 \ln +4 n+1$ $2 \ln \lg n+25 n+1$

$$
T(n) \leq c f(n) \text {, where } n \geq n_{\theta}
$$

Searching a single array for duplicate numbers?

What is the asymptotic running time? $\mathrm{T}(\mathrm{n})=21 \mathrm{nlgn}+25 \mathrm{n}+1$

$$
\begin{aligned}
& T(n)=O(n \lg n) \\
& \frac{21 n \lg n}{n \lg A}+\frac{25 x}{A \lg n} \frac{+1}{n \lg n} \leq \frac{c A \lg A}{A \lg A} \forall n \geq n_{0} \\
& \begin{aligned}
\rightarrow & 21+\frac{25}{\lg 1}+\frac{1}{n \lg n} \leq c \quad \forall n \geq n_{0}^{25} \\
& \frac{25}{\lg n} \leq 0 \rightarrow \frac{25}{\lg 255^{25}} \rightarrow \frac{28}{25 \lg 2} \rightarrow \frac{1}{\lg 2} \rightarrow 1 \rightarrow 41
\end{aligned}
\end{aligned}
$$

$T(n) \leq c f(n)$, where $n \geq n_{0}$
Searching a single array for duplicate numbers?

$$
\begin{aligned}
& 2^{\frac{1}{n g n}} \leq 1 \quad 21+1+1 \leq c \quad \forall n \geq z^{25} \\
& c=22, n_{0}=2^{25}
\end{aligned}
$$

Exerase
Big-O Examples

- Claim: $22^{n+10}-\left(0\left(2^{2 l}\right)\right.$

$$
\begin{aligned}
& 2^{n+10} \leq c 2^{n} \quad \forall n \geq n_{0} \\
& 2^{n} 2^{10} \leq c 7^{\alpha n} \quad \forall n \geq n_{0} \\
& c=2^{10}, n_{0}=1
\end{aligned}
$$

$T(n) \leq c f(n)$, where $n \geq n_{\ominus}$
Note: c, n_{0} cannot depend on n

$$
\begin{aligned}
& \text { Big-O Examples } \\
& \text { - Claim: } 2^{10 n}=O\left(2^{n}\right) \\
& z^{-n} \frac{2^{10 n}}{2^{n}} \leq c z^{x} \quad \forall n \geq n_{0} \\
& 2^{10 n-n} \leq c \quad 2^{10 n} \neq O\left(2^{n}\right) \\
& 2_{9}^{a n} \leq C^{\prime} \quad \forall n \geq n_{0}
\end{aligned}
$$

Big-O Examples
$T(n)=0(f(n))$
If and only if we can find values for $c, n_{0}>0$, such that $T(n) \leq c \quad f(n)$, where $n \geq n_{\ominus}$
Note: c, n_{0} cannot depend on n

- Claim: for every $\mathrm{k}>=1, \mathrm{n}^{\mathrm{k}}$ is not $\mathrm{O}\left(\mathrm{n}^{\mathrm{k}-1}\right)$

$$
\begin{aligned}
& \forall k \geq 1 \quad n^{k} \neq G\left(n^{k-1}\right) \\
& n^{k} \leq C\left(n^{k-1} \forall n \geq n_{0}\right. \\
& x^{k} \leq c \not x^{k} n^{-1} \forall n \geq n_{0} \\
& n \leq c \quad \forall n \geq n_{0}
\end{aligned}
$$

(1) Claim is true

Examples
If and only if we can find values for $c, n_{0}>0$, such that
$c_{1} f(n) \leq T(n) \leq c_{2} f(n)$, where $n \geq n_{0}$ Note: c_{1}, c_{2}, n_{0} cannot depend on n

- Claim: $21 \mathrm{n}\left(\log _{2}(\mathrm{n})+1\right)=\Theta\left(\mathrm{n} \log _{2} \mathrm{n}\right)$

Other Notations

upper

- $\operatorname{Big-O}(\leq): T(n)=O(f(n))$ if $T(n) \leq c f(n)$, where $n \geq n_{0}$
- Big-Omega (\geq) $T(n)=\Omega(f(n))$ if $T(n) \geq c f(n)$, where $n \geq n_{0}$

$c_{1} f(n) \leq T(n) \leq c_{2} f(n)$, where $n \geq n_{0}$

Other Notations

- $\operatorname{Big}-\mathrm{O}(\leq) \quad: T(n)=O(f(n))$ if $T(n) \leq c f(n)$, where $n \geq n_{0}$
- little-o (<)
- Big-Omega $(\geq): T(n)=\Omega(f(n))$ if $T(n) \geq c f(n)$, where $n \geq n_{0}$
- Little-omega (>)

© Examples
If and only if we can find values for $c, n_{0}>0$, such that $c_{1} f(n) \leq T(n) \leq c_{2} f(n)$, where $n \geq n_{0}$ Note: c_{1}, c_{2}, n_{0} cannot depend on n
- Claim: $21 \mathrm{n}\left(\log _{2}(n)+1\right)=\Theta\left(\log _{2} n\right)$

$$
\begin{aligned}
& \text { © Examples } \\
& \text {, } \\
& \begin{array}{l}
t(n)=\theta(f(n)) \\
\text { If and only if we fane values for, } n d \text {, such that }
\end{array} \\
& \begin{array}{c}
c_{1} f(n) \leq T(n) \leq c_{2} f(n), \text { where } n \geq n_{\theta} \\
\text { Note: } c_{1}, c_{2}, n_{0} \text { cannotdepen }
\end{array} \\
& \begin{array}{l}
\text { Claim: } 21 n\left(\log _{2}(n)+1\right)=\theta\left(\log _{2} n\right) \\
C_{1} n \lg n \leq 2 \ln \lg n+2 \ln \forall \quad \forall n \geq \pi_{0}
\end{array} \\
& c_{1} n \lg n \leq 2 \ln \lg n \quad 2 \cos \lg n+2 \ln \\
& c_{1} \pi \operatorname{tgn} \leq 21 \pi \operatorname{tgn} \\
& n \geq 1 \\
& c_{1}=21, c_{2}=42, n_{0}=2
\end{aligned}
$$

$O(f(n)): T(n) \leq c_{2} f(n)$
$c_{2} f(n)$

T(n)

$$
\Theta(f(n)): c_{1} f(n) \leq T(n) \leq c_{2} f(n)
$$

n0

$$
\Omega(f(n)): T(n) \geq c_{1} f(n)
$$

What is $f(n)$?

What are

 good values for:- C
- n_{0}

Insertion Sort vs Merge Sort

Simplifying the Comparison

-Why can we remove leading coefficients?
-Why can we remove lower order terms?

- They are both insignificant when compared with the glowth of the function.
- They both get factored into the constant " c "

