Asymptotic Notation (Big O)

https://cs.pomona.edu/classes/cs140/

Outline

Topics and Learning Objectives

- Discuss total running time
- Discuss asymptotic running time
- Learn about asymptotic notation

Exercise

• Running time

Extra Resources

• Chapter 3: asymptotic notation

Comparing Algorithms and Data Structures

We like to compare algorithms and data structures

- Speed
- Memory usage

We don't always need to care about little details

We ignore some details anyway

- Data locality
- Differences among operations

Constants

Big-O Example Code (ODS 1.3.3)

- # function_one has a total running time of 2nlogn + 2n 250
 a = function_one(input_one)
- # function_two has a total running time of 3nlogn + 6n + 48
 b = function_two(input_two)
- The total running time of the code above is:

 $2n \log n + 2n - 250 + 1 + 3n \log n + 6n + 48 + 1$

 $5n\log n + 8n - 200$

Big-O Example Math (ODS 1.3.3)

 $5n\log n + 8n - 200$

- We don't care about most of these details
- We want to be able to quickly glance at the running time of an algorithm and know how it compares to others
- So we say the following

$$5n\log n + 8n - 200 = O(n\log n)$$

Big-O (Asymptotic Running Time) T(n) = O(f(n))

If and only if (iff) we can find values for c, $n_0 > 0$, such that

T(n) \leq c f(n), where n \geq n₀

Note: c, n₀ cannot depend on n

Search two separate arrays (sequentially) for a given number?

T(n) \leq c f(n), where n \geq n₀

Search two separate arrays (sequentially) for a given number?

Hash Table > O(n) Maine Searching two arrays for any common number? Write an algorithm (in pseudocode): What is the total running time? T what is the total running time? n For valt In array 1 If Findly arrayz, vall) (Zn+1) Return True Reprint False T(n) = n + n(2n+1) + 1= $2n^2 + n + 1$ 15

T(n) \leq c f(n), where n \geq n₀

Searching two arrays for any common number?

What is the asymptotic running time? $T(n) = 2n^2 + 2n + 1$ $T(n) \neq O(n)$ Zn2+Zn+12CN $\sqrt{202 + 1 = 203}$ 20 + 2 + 4 = 2 $C) \qquad n_0 = c'$

$T(n) \leq c f(n)$, where $n \geq n_0$

Searching two arrays for any common number?

What is the asymptotic running time? $T(n) = 2n^2 + 2n + 1$ $T(n) = O(n^2)$ $2n^2 + Zn +$ $2n^{2} + 2n^{2} + 1n^{2} \leq C$ $2n^2+2n^2+n^2\leq (n^2)$ 4n2no $7+2n+n^2$ 17

T(n) \leq c f(n), where n \geq n₀

Searching a single array for duplicate numbers?

What is the asymptotic running time? T(n) = 21nlgn + 25n + 1 $T(n) = O(n \lg n)$ \forall SX+1 SCAIG $N \leq N_0$ Ign n lgn -> -<u>28</u> -> -<u>28</u> ' 19

T(n) \leq c f(n), where n \geq n₀

Searching a single array for duplicate numbers?

What is the asymptotic running time? $T(n) = 21nlgn + 25n + 1 = O(n g_0)$ $Z + U + n g_0 = Z + n Z = N_0$ $N_0 = Z^{2S}$

Ngn <1 ZI + I + I ZC + N Z ZZS $C = ZZ_1 \quad \Lambda_0 = Z$

T(n) = O(f(n))If and only if we can find values for c, $n_0 > 0$, such that $T(n) \le c f(n), \text{ where } n \ge n_0$ Note: c, $n_0 \text{ cannot}$ depend on n

T(n) = O(f(n))If and only if we can find values for c, $n_0 > 0$, such that **Big-O Examples** $T(n) \leq c f(n)$, where $n \geq n_0$ Note: c, n₀ cannot depend on n • Claim: $2^{10n} \neq O(2^n)$ ZION C CZX X NZNO $S_{100} \neq O(S_{u})$ 7,10n-n Z C $2^{4n} \leq C$ ¥ nZno

 $T(n) = \Theta(f(n))$ If and only if we can find values for c, n₀ > 0, such that $c_1 f(n) \leq T(n) \leq c_2 f(n), \text{ where } n \geq n_0$ Note: c₁, c₂, n₀ <u>cannot</u> depend on n

• Claim: 21n $(\log_2(n) + 1) = \Theta(n\log_2 n)$

Other Notations

- Big-O (\leq) : T(n) = O(f(n)) if T(n) \leq c f(n), where n \geq n₀
- little-o (<)
- Big-Omega (\geq) : T(n) = $\Omega(f(n))$ if T(n) \geq c f(n), where n \geq n₀
- Little-omega (>)

 $T(n) = \Theta(f(n))$ If and only if we can find values for c, $n_0 > 0$, such that • Examples $c_1 f(n) \leq T(n) \leq c_2 f(n)$, where $n \geq n_0$, loourd Note: c₁, c₂, n₀ cannot depend on n Big-O upper • Claim: 21n $(\log_2(n) + 1) = \Theta(n\log_2 n)$ ZINIGN + ZINK CZNIGN HNZA IN Z Zhilgh + Zinigh Konligh lgn ZINGN Z lgi C= 47, ZZTA lgn 27

• Examples Claim: 21n $(\log_2(n) + 1) = \Theta(n\log_2 n)$ $\int_{0}^{2} \frac{2}{2}$ $\int_{0}^{2} \frac{2}{2}$

$$\begin{split} T(n) &= \Theta(f(n)) \\ \text{If and only if we can find values for } c, n_0 > 0, \text{ such that} \\ c_1 f(n) &\leq T(n) \leq c_2 f(n), \text{ where } n \geq n_0 \\ \text{Note: } c_1, c_2, n_0 \underbrace{\text{cannot}}_{\text{depend on } n} \end{split}$$

What is f(n)?

What are good values for:

n

Insertion Sort vs Merge Sort

Simplifying the Comparison

- Why can we remove leading coefficients?
- Why can we remove lower order terms?
- They are both insignificant when compared with the growth of the function.
- They both get factored into the constant "c"