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Outline

Topics and Learning Objectives
• Specify an algorithm
• Prove correctness
• Analyze total running time

Exercise
• Friend Circles
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Extra Resources

• Chapter 2 of Introduction to Algorithms, Third Edition
• https://www.toptal.com/developers/sorting-algorithms/
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https://www.toptal.com/developers/sorting-algorithms/


Survey (answer on Gradescope)

• What do you go by (for example, I go by Tony instead of Anthony)?

• What data structures do you know (any amount of familiarity)?

• What algorithms do you know?

• What programming languages do you know? 
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Friend Circles Exercise

• Read the problem (about 1 minute)
• Find the PDF on the course website

• Discuss with group for about 5 minutes

• Discuss as a class
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Warm-Up

Sorting Problem
• Input: an array of n items, in arbitrary order
• Output: a reordering of the input into nondecreasing order
• Assumptions: none

Clark Potter Granger Weasley Snape Clark Lovegood Malfoy

Clark Clark Granger Lovegood Malfoy Potter Snape Weasley
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Warm-Up

Sorting Problem
• Input: an array of n items, in arbitrary order
• Output: a reordering of the input into nondecreasing order
• Assumptions: none

We will
• Specify the algorithm (learn my pseudocode),
• Argue that it correctly sorts, and
• Analyze its running time.
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Specify the algorithm



Insertion Sort

1. FUNCTION InsertionSort(array)
2. FOR j IN [1 ..< array.length]
3. key = array[j]
4. i = j - 1
5. WHILE i ≥ 0 && array[i] > key
6. array[i + 1] = array[i]
7. i = i - 1
8. array[i + 1] = key
9. RETURN array

5 2 4 6 1 3

// Insert “key” into correct
// position to its left.
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Insertion Sort

1. FUNCTION InsertionSort(array)
2. FOR j IN [1 ..< array.length]
3. key = array[j]
4. i = j - 1
5. WHILE i ≥ 0 && array[i] > key
6. array[i + 1] = array[i]
7. i = i - 1
8. array[i + 1] = key
9. RETURN array

5 2 4 6 1 3

// Insert “key” into correct
// position to its left.
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Argue that it correctly sorts
Proof of correctness



Insertion Sort Correctness Theorem

Theorem: a proposition that can be proved by a chain of reasoning

For every input array of length n ≥ 1, the Insertion Sort algorithm 
reorders the array into nondecreasing order.
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Insertion Sort – Proof of correctness

Lemma (loop invariant)
• At the start of the iteration with index j, the 

subarray array[0 ..= j-1] consists of the elements 
originally in array[0 ..= j-1], but in non-decreasing 
order.

What is a lemma?
an intermediate theorem in a proof

1.FUNCTION InsertionSort(array)
2. FOR j IN [1 ..< array.length]
3. key = array[j]
4. i = j - 1
5. WHILE i ≥ 0 && array[i] > key
6. array[i + 1] = array[i]
7. i = i - 1
8. array[i + 1] = key
9. RETURN array
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Insertion Sort – Proof of correctness

Lemma (loop invariant)
• At the start of the iteration with index j, the 

subarray array[0 ..= j-1] consists of the elements 
originally in array[0 ..= j-1], but in non-decreasing order.

General conditions for loop invariants
1. Initialization: The loop invariant is satisfied at the beginning 

of the loop before the first iteration.

2. Maintenance: If the loop invariant is true before the ith
iteration, then the loop invariant will be true before the i+1 
iteration.

3. Termination: When the loop terminates, the invariant gives 
us a useful property that helps show that the algorithm is 
correct.

1.FUNCTION InsertionSort(array)
2. FOR j IN [1 ..< array.length]
3. key = array[j]
4. i = j - 1
5. WHILE i ≥ 0 && array[i] > key
6. array[i + 1] = array[i]
7. i = i - 1
8. array[i + 1] = key
9. RETURN array
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Insertion Sort – Proof of correctness

1. Initialization: The loop invariant is satisfied at the 
beginning of the loop before the first iteration..

Lemma (loop invariant)
• At the start of the iteration with index j, the 

subarray array[0 ..= j-1] consists of the elements 
originally in array[0 ..= j-1], but in non-decreasing 
order.

1.FUNCTION InsertionSort(array)
2. FOR j IN [1 ..< array.length]
3. key = array[j]
4. i = j - 1
5. WHILE i ≥ 0 && array[i] > key
6. array[i + 1] = array[i]
7. i = i - 1
8. array[i + 1] = key
9. RETURN array
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For to While Loop

FOR j IN [1 ..< array.length]
…

j = 1
WHILE j < array.length

…
j = j + 1
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1. Initialization: The loop invariant is satisfied at the 
beginning of the loop before the first iteration..



Insertion Sort – Proof of correctness

1. Initialization: The loop invariant is satisfied at the 
beginning of the loop before the first iteration..

Lemma (loop invariant)
• At the start of the iteration with index j, the 

subarray array[0 ..= j-1] consists of the elements 
originally in array[0 ..= j-1], but in non-decreasing 
order.

• When j = 1, the subarray is array[0 ..= 1-1], which 
includes only the first element of the array. The single 
element subarray is sorted.

1.FUNCTION InsertionSort(array)
2. FOR j IN [1 ..< array.length]
3. key = array[j]
4. i = j - 1
5. WHILE i ≥ 0 && array[i] > key
6. array[i + 1] = array[i]
7. i = i - 1
8. array[i + 1] = key
9. RETURN array

18



Insertion Sort – Proof of correctness

2. Maintenance: If the loop invariant is true 
before the ith iteration, then the loop invariant 
will be true before the i+1 iteration.

Lemma (loop invariant)
• At the start of the iteration with index j, the 

subarray array[0 ..= j-1] consists of the elements 
originally in array[0 ..= j-1], but in non-decreasing 
order.

• Assume array[0 ..= j-1] is sorted. Informally, the 
loop operates by moving elements to the right 
until it finds the position of key. Next, j is 
incremented.

1.FUNCTION InsertionSort(array)
2. FOR j IN [1 ..< array.length]
3. key = array[j]
4. i = j - 1
5. WHILE i ≥ 0 && array[i] > key
6. array[i + 1] = array[i]
7. i = i - 1
8. array[i + 1] = key
9. RETURN array
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Insertion Sort – Proof of correctness

3. Termination: When the loop terminates, the 
invariant gives us a useful property that helps 
show that the algorithm is correct.

Lemma (loop invariant)
• At the start of the iteration with index j, the 

subarray array[0 ..= j-1] consists of the elements 
originally in array[0 ..= j-1], but in non-decreasing 
order.

• The loop terminates when j = n. Given the 
initialization and maintenance results, we have 
shown that: array[0 ..= j-1] à array[0 ..= n-1] in 
non-decreasing order.

1.FUNCTION InsertionSort(array)
2. FOR j IN [1 ..< array.length]
3. key = array[j]
4. i = j - 1
5. WHILE i ≥ 0 && array[i] > key
6. array[i + 1] = array[i]
7. i = i - 1
8. array[i + 1] = key
9. RETURN array

20



Analyze its running time
Proof of running time



Insertion Sort – Running time

Analyze using the RAM (random access machine) model
• Instructions are executed one after another (no parallelism)
• Each instruction takes a constant amount of time
• Arithmetic (+, -, *, /, %, floor, ceiling)
• Data movement (load, store, copy)
• Control (branching, subroutine calls)

• Ignores memory hierarchy! (never forget: linked lists are awful)
• This is a very simplified way of looking at algorithms
• Compare algorithms while ignoring hardware
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Insertion Sort Running Time Theorem

Theorem: a proposition that can be proved by a chain of reasoning

For every input array of length n ≥ 1, the Insertion Sort algorithm 
performs at most 5n2 operations.

For every input array of length n ≥ 1, the Insertion Sort algorithm performs at most O(n2) operations.

For every input array of length n ≥ 1, the Insertion Sort algorithm performs on average O(n2) operations.

For every input array of length n ≥ 1, the Insertion Sort algorithm performs at least O(n2) operations.

23



Insertion Sort – Running time

On what does the running time depend?

• Number of items to sort
• 3 numbers vs 1000

1.FUNCTION InsertionSort(array)
2. FOR j IN [1 ..< array.length]
3. key = array[j]
4. i = j - 1
5. WHILE i ≥ 0 && array[i] > key
6. array[i + 1] = array[i]
7. i = i - 1
8. array[i + 1] = key
9. RETURN array
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Insertion Sort – Running time

On what does the running time depend?

• Number of items to sort
• 3 numbers vs 1000

• How much are they already sorted
• The hint here is that the inner loop is a while

loop (not a for loop)

1.FUNCTION InsertionSort(array)
2. FOR j IN [1 ..< array.length]
3. key = array[j]
4. i = j - 1
5. WHILE i ≥ 0 && array[i] > key
6. array[i + 1] = array[i]
7. i = i - 1
8. array[i + 1] = key
9. RETURN array
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1.FUNCTION InsertionSort(array)
2. FOR j IN [1 ..< array.length]
3. key = array[j]
4. i = j - 1
5. WHILE i ≥ 0 && array[i] > key
6. array[i + 1] = array[i]
7. i = i - 1
8. array[i + 1] = key
9. RETURN array

Cost
1. 0
2. ?
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1.FUNCTION InsertionSort(array)
2. j = 1
3. WHILE j < array.length
4. key = array[j]
5. i = j - 1
6. WHILE i ≥ 0 && array[i] > key
7. array[i + 1] = array[i]
8. i = i - 1
9. array[i + 1] = key
10. j = j + 1
11. RETURN array

Cost
1. 0
2. 1
3. 2
4. 2
5. 2
6. 4
7. 4
8. 2
9. 3
10. 2
11. 1
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1.FUNCTION InsertionSort(array)
2. j = 1
3. WHILE j < array.length
4. key = array[j]
5. i = j - 1
6. WHILE i ≥ 0 && array[i] > key
7. array[i + 1] = array[i]
8. i = i - 1
9. array[i + 1] = key
10. j = j + 1
11. RETURN array

Cost
1. 0
2. 1
3. 2
4. 2
5. 2
6. 4
7. 4
8. 2
9. 3
10. 2
11. 1

Executions
0
1

length

29



1.FUNCTION InsertionSort(array)
2. j = 1
3. WHILE j < array.length
4. key = array[j]
5. i = j - 1
6. WHILE i ≥ 0 && array[i] > key
7. array[i + 1] = array[i]
8. i = i - 1
9. array[i + 1] = key
10. j = j + 1
11. RETURN array

Cost
1. 0
2. 1
3. 2
4. 2
5. 2
6. 4
7. 4
8. 2
9. 3
10. 2
11. 1

Executions
0
1
n

n - 1
n - 1
?

Loop code always 
executes one 

fewer time than 
the condition 

check.
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1.FUNCTION InsertionSort(array)
2. j = 1
3. WHILE j < array.length
4. key = array[j]
5. i = j - 1
6. WHILE i ≥ 0 && array[i] > key
7. array[i + 1] = array[i]
8. i = i - 1
9. array[i + 1] = key
10. j = j + 1
11. RETURN array

Cost
1. 0
2. 1
3. 2
4. 2
5. 2
6. 4
7. 4
8. 2
9. 3
10. 2
11. 1

Executions
0
1
n

n - 1
n - 1

depends

Loop code always 
executes one 

fewer time than 
the condition 

check.

Depends on how 
sorted array is
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1.FUNCTION InsertionSort(array)
2. j = 1
3. WHILE j < array.length
4. key = array[j]
5. i = j - 1
6. WHILE i ≥ 0 && array[i] > key
7. array[i + 1] = array[i]
8. i = i - 1
9. array[i + 1] = key
10. j = j + 1
11. RETURN array

Cost
1. 0
2. 1
3. 2
4. 2
5. 2
6. 4
7. 4
8. 2
9. 3
10. 2
11. 1

Executions
0
1
n

n - 1
n - 1

(n - 1)x
(n - 1)(x - 1)
(n - 1)(x - 1)

n - 1
n - 1
1

Loop code always 
executes one 

fewer time than 
the condition 

check.

Depends on how 
sorted array is
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1.FUNCTION InsertionSort(array)
2. j = 1
3. WHILE j < array.length
4. key = array[j]
5. i = j - 1
6. WHILE i ≥ 0 && array[i] > key
7. array[i + 1] = array[i]
8. i = i - 1
9. array[i + 1] = key
10. j = j + 1
11. RETURN array

Cost
1. 0
2. 1
3. 2
4. 2
5. 2
6. 4
7. 4
8. 2
9. 3
10. 2
11. 1

Executions
0
1
n

n - 1
n - 1

(n - 1)x
(n - 1)(x - 1)
(n - 1)(x - 1)

n - 1
n - 1
1

Loop code always 
executes one 

fewer time than 
the condition 

check.

Depends on how 
sorted array is

What is the total running time (add up all operations)?
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1.FUNCTION InsertionSort(array)
2. j = 1
3. WHILE j < array.length
4. key = array[j]
5. i = j - 1
6. WHILE i ≥ 0 && array[i] > key
7. array[i + 1] = array[i]
8. i = i - 1
9. array[i + 1] = key
10. j = j + 1
11. RETURN array

Cost
1. 0
2. 1
3. 2
4. 2
5. 2
6. 4
7. 4
8. 2
9. 3
10. 2
11. 1

Executions
0
1
n

n - 1
n - 1

(n - 1)x
(n - 1)(x - 1)
(n - 1)(x - 1)

n - 1
n - 1
1

Loop code always 
executes one 

fewer time than 
the condition 

check.

Depends on how 
sorted array is

Total Running Time = 1 + 2n + (n – 1)(2 + 2 + 4x + (x – 1)(4 + 2) + 3 + 2) + 1
= 10nx + 5n – 10x – 1

What is the total running time (add up all operations)?
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1.FUNCTION InsertionSort(array)
2. j = 1
3. WHILE j < array.length
4. key = array[j]
5. i = j - 1
6. WHILE i ≥ 0 && array[i] > key
7. array[i + 1] = array[i]
8. i = i - 1
9. array[i + 1] = key
10. j = j + 1
11. RETURN array

Cost
1. 0
2. 1
3. 2
4. 2
5. 2
6. 4
7. 4
8. 2
9. 3
10. 2
11. 1

Executions
0
1
n

n - 1
n - 1

(n - 1)x
(n - 1)(x - 1)
(n - 1)(x - 1)

n - 1
n - 1
1

Loop code always 
executes one 

fewer time than 
the condition 

check.

Depends on how 
sorted array is

Total Running Time = 1 + 2n + (n – 1)(2 + 2 + 4x + (x – 1)(4 + 2) + 3 + 2) + 1
= 10nx + 5n – 10x – 1
= 10n + 5n – 10 – 1
= 15n – 11

What is the best-case scenario? array is already sorted x = ? 

x = 1 

Is “- 11” a problem? Negative time?
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1.FUNCTION InsertionSort(array)
2. j = 1
3. WHILE j < array.length
4. key = array[j]
5. i = j - 1
6. WHILE i ≥ 0 && array[i] > key
7. array[i + 1] = array[i]
8. i = i - 1
9. array[i + 1] = key
10. j = j + 1
11. RETURN array

Cost
1. 0
2. 1
3. 2
4. 2
5. 2
6. 4
7. 4
8. 2
9. 3
10. 2
11. 1

Executions
0
1
n

n - 1
n - 1

(n - 1)x
(n - 1)(x - 1)
(n - 1)(x - 1)

n - 1
n - 1
1

Loop code always 
executes one 

fewer time than 
the condition 

check.

Depends on how 
sorted array is

Total Running Time = 1 + 2n + (n – 1)(2 + 2 + 4x + (x – 1)(4 + 2) + 3 + 2) + 1
= 10nx + 5n – 10x – 1
= 5n2 + 5n – 5n – 1
= 5n2 – 1

What is the worst-case scenario? array is reverse sorted x = ? 

x =  n/2 on average
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Best, Worst, and Average

We usually concentrate on worst-case
• Gives an upper bound on the running time for any input
• The worst case can occur fairly often
• The average case is often relatively as bad as the worst case
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Summary

• Introductions

• (Difficult) Exercise

• Specify an algorithm

• Prove correctness

• Analyze total running time
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