
Insertion Sort
https://cs.pomona.edu/classes/cs140/

https://cs.pomona.edu/classes/cs140/

Outline

Topics and Learning Objectives
• Specify an algorithm
• Prove correctness
• Analyze total running time

Exercise
• Friend Circles

3

Extra Resources

• Chapter 2 of Introduction to Algorithms, Third Edition
• https://www.toptal.com/developers/sorting-algorithms/

4

https://www.toptal.com/developers/sorting-algorithms/

Survey (answer on Gradescope)

• What do you go by (for example, I go by Tony instead of Anthony)?

• What data structures do you know (any amount of familiarity)?

• What algorithms do you know?

• What programming languages do you know?

5

Friend Circles Exercise

• Read the problem (about 1 minute)
• Find the PDF on the course website

• Discuss with group for about 5 minutes

• Discuss as a class

6

Warm-Up

Sorting Problem
• Input: an array of n items, in arbitrary order
• Output: a reordering of the input into nondecreasing order
• Assumptions: none

Clark Potter Granger Weasley Snape Clark Lovegood Malfoy

Clark Clark Granger Lovegood Malfoy Potter Snape Weasley

7

Warm-Up

Sorting Problem
• Input: an array of n items, in arbitrary order
• Output: a reordering of the input into nondecreasing order
• Assumptions: none

We will
• Specify the algorithm (learn my pseudocode),
• Argue that it correctly sorts, and
• Analyze its running time.

8

Specify the algorithm

Insertion Sort

1. FUNCTION InsertionSort(array)
2. FOR j IN [1 ..< array.length]
3. key = array[j]
4. i = j - 1
5. WHILE i ≥ 0 && array[i] > key
6. array[i + 1] = array[i]
7. i = i - 1
8. array[i + 1] = key
9. RETURN array

5 2 4 6 1 3

// Insert “key” into correct
// position to its left.

10

Insertion Sort

1. FUNCTION InsertionSort(array)
2. FOR j IN [1 ..< array.length]
3. key = array[j]
4. i = j - 1
5. WHILE i ≥ 0 && array[i] > key
6. array[i + 1] = array[i]
7. i = i - 1
8. array[i + 1] = key
9. RETURN array

5 2 4 6 1 3

// Insert “key” into correct
// position to its left.

11

Argue that it correctly sorts
Proof of correctness

Insertion Sort Correctness Theorem

Theorem: a proposition that can be proved by a chain of reasoning

For every input array of length n ≥ 1, the Insertion Sort algorithm
reorders the array into nondecreasing order.

13

Insertion Sort – Proof of correctness

Lemma (loop invariant)
• At the start of the iteration with index j, the

subarray array[0 ..= j-1] consists of the elements
originally in array[0 ..= j-1], but in non-decreasing
order.

What is a lemma?
an intermediate theorem in a proof

1.FUNCTION InsertionSort(array)
2. FOR j IN [1 ..< array.length]
3. key = array[j]
4. i = j - 1
5. WHILE i ≥ 0 && array[i] > key
6. array[i + 1] = array[i]
7. i = i - 1
8. array[i + 1] = key
9. RETURN array

14

Insertion Sort – Proof of correctness

Lemma (loop invariant)
• At the start of the iteration with index j, the

subarray array[0 ..= j-1] consists of the elements
originally in array[0 ..= j-1], but in non-decreasing order.

General conditions for loop invariants
1. Initialization: The loop invariant is satisfied at the beginning

of the loop before the first iteration.

2. Maintenance: If the loop invariant is true before the ith
iteration, then the loop invariant will be true before the i+1
iteration.

3. Termination: When the loop terminates, the invariant gives
us a useful property that helps show that the algorithm is
correct.

1.FUNCTION InsertionSort(array)
2. FOR j IN [1 ..< array.length]
3. key = array[j]
4. i = j - 1
5. WHILE i ≥ 0 && array[i] > key
6. array[i + 1] = array[i]
7. i = i - 1
8. array[i + 1] = key
9. RETURN array

15

Insertion Sort – Proof of correctness

1. Initialization: The loop invariant is satisfied at the
beginning of the loop before the first iteration..

Lemma (loop invariant)
• At the start of the iteration with index j, the

subarray array[0 ..= j-1] consists of the elements
originally in array[0 ..= j-1], but in non-decreasing
order.

1.FUNCTION InsertionSort(array)
2. FOR j IN [1 ..< array.length]
3. key = array[j]
4. i = j - 1
5. WHILE i ≥ 0 && array[i] > key
6. array[i + 1] = array[i]
7. i = i - 1
8. array[i + 1] = key
9. RETURN array

16

For to While Loop

FOR j IN [1 ..< array.length]
…

j = 1
WHILE j < array.length

…
j = j + 1

17

1. Initialization: The loop invariant is satisfied at the
beginning of the loop before the first iteration..

Insertion Sort – Proof of correctness

1. Initialization: The loop invariant is satisfied at the
beginning of the loop before the first iteration..

Lemma (loop invariant)
• At the start of the iteration with index j, the

subarray array[0 ..= j-1] consists of the elements
originally in array[0 ..= j-1], but in non-decreasing
order.

• When j = 1, the subarray is array[0 ..= 1-1], which
includes only the first element of the array. The single
element subarray is sorted.

1.FUNCTION InsertionSort(array)
2. FOR j IN [1 ..< array.length]
3. key = array[j]
4. i = j - 1
5. WHILE i ≥ 0 && array[i] > key
6. array[i + 1] = array[i]
7. i = i - 1
8. array[i + 1] = key
9. RETURN array

18

Insertion Sort – Proof of correctness

2. Maintenance: If the loop invariant is true
before the ith iteration, then the loop invariant
will be true before the i+1 iteration.

Lemma (loop invariant)
• At the start of the iteration with index j, the

subarray array[0 ..= j-1] consists of the elements
originally in array[0 ..= j-1], but in non-decreasing
order.

• Assume array[0 ..= j-1] is sorted. Informally, the
loop operates by moving elements to the right
until it finds the position of key. Next, j is
incremented.

1.FUNCTION InsertionSort(array)
2. FOR j IN [1 ..< array.length]
3. key = array[j]
4. i = j - 1
5. WHILE i ≥ 0 && array[i] > key
6. array[i + 1] = array[i]
7. i = i - 1
8. array[i + 1] = key
9. RETURN array

19

Insertion Sort – Proof of correctness

3. Termination: When the loop terminates, the
invariant gives us a useful property that helps
show that the algorithm is correct.

Lemma (loop invariant)
• At the start of the iteration with index j, the

subarray array[0 ..= j-1] consists of the elements
originally in array[0 ..= j-1], but in non-decreasing
order.

• The loop terminates when j = n. Given the
initialization and maintenance results, we have
shown that: array[0 ..= j-1] à array[0 ..= n-1] in
non-decreasing order.

1.FUNCTION InsertionSort(array)
2. FOR j IN [1 ..< array.length]
3. key = array[j]
4. i = j - 1
5. WHILE i ≥ 0 && array[i] > key
6. array[i + 1] = array[i]
7. i = i - 1
8. array[i + 1] = key
9. RETURN array

20

Analyze its running time
Proof of running time

Insertion Sort – Running time

Analyze using the RAM (random access machine) model
• Instructions are executed one after another (no parallelism)
• Each instruction takes a constant amount of time
• Arithmetic (+, -, *, /, %, floor, ceiling)
• Data movement (load, store, copy)
• Control (branching, subroutine calls)

• Ignores memory hierarchy! (never forget: linked lists are awful)
• This is a very simplified way of looking at algorithms
• Compare algorithms while ignoring hardware

22

Insertion Sort Running Time Theorem

Theorem: a proposition that can be proved by a chain of reasoning

For every input array of length n ≥ 1, the Insertion Sort algorithm
performs at most 5n2 operations.

For every input array of length n ≥ 1, the Insertion Sort algorithm performs at most O(n2) operations.

For every input array of length n ≥ 1, the Insertion Sort algorithm performs on average O(n2) operations.

For every input array of length n ≥ 1, the Insertion Sort algorithm performs at least O(n2) operations.

23

Insertion Sort – Running time

On what does the running time depend?

• Number of items to sort
• 3 numbers vs 1000

1.FUNCTION InsertionSort(array)
2. FOR j IN [1 ..< array.length]
3. key = array[j]
4. i = j - 1
5. WHILE i ≥ 0 && array[i] > key
6. array[i + 1] = array[i]
7. i = i - 1
8. array[i + 1] = key
9. RETURN array

24

25

Insertion Sort – Running time

On what does the running time depend?

• Number of items to sort
• 3 numbers vs 1000

• How much are they already sorted
• The hint here is that the inner loop is a while

loop (not a for loop)

1.FUNCTION InsertionSort(array)
2. FOR j IN [1 ..< array.length]
3. key = array[j]
4. i = j - 1
5. WHILE i ≥ 0 && array[i] > key
6. array[i + 1] = array[i]
7. i = i - 1
8. array[i + 1] = key
9. RETURN array

26

1.FUNCTION InsertionSort(array)
2. FOR j IN [1 ..< array.length]
3. key = array[j]
4. i = j - 1
5. WHILE i ≥ 0 && array[i] > key
6. array[i + 1] = array[i]
7. i = i - 1
8. array[i + 1] = key
9. RETURN array

Cost
1. 0
2. ?

27

1.FUNCTION InsertionSort(array)
2. j = 1
3. WHILE j < array.length
4. key = array[j]
5. i = j - 1
6. WHILE i ≥ 0 && array[i] > key
7. array[i + 1] = array[i]
8. i = i - 1
9. array[i + 1] = key
10. j = j + 1
11. RETURN array

Cost
1. 0
2. 1
3. 2
4. 2
5. 2
6. 4
7. 4
8. 2
9. 3
10. 2
11. 1

28

1.FUNCTION InsertionSort(array)
2. j = 1
3. WHILE j < array.length
4. key = array[j]
5. i = j - 1
6. WHILE i ≥ 0 && array[i] > key
7. array[i + 1] = array[i]
8. i = i - 1
9. array[i + 1] = key
10. j = j + 1
11. RETURN array

Cost
1. 0
2. 1
3. 2
4. 2
5. 2
6. 4
7. 4
8. 2
9. 3
10. 2
11. 1

Executions
0
1

length

29

1.FUNCTION InsertionSort(array)
2. j = 1
3. WHILE j < array.length
4. key = array[j]
5. i = j - 1
6. WHILE i ≥ 0 && array[i] > key
7. array[i + 1] = array[i]
8. i = i - 1
9. array[i + 1] = key
10. j = j + 1
11. RETURN array

Cost
1. 0
2. 1
3. 2
4. 2
5. 2
6. 4
7. 4
8. 2
9. 3
10. 2
11. 1

Executions
0
1
n

n - 1
n - 1
?

Loop code always
executes one

fewer time than
the condition

check.

30

1.FUNCTION InsertionSort(array)
2. j = 1
3. WHILE j < array.length
4. key = array[j]
5. i = j - 1
6. WHILE i ≥ 0 && array[i] > key
7. array[i + 1] = array[i]
8. i = i - 1
9. array[i + 1] = key
10. j = j + 1
11. RETURN array

Cost
1. 0
2. 1
3. 2
4. 2
5. 2
6. 4
7. 4
8. 2
9. 3
10. 2
11. 1

Executions
0
1
n

n - 1
n - 1

depends

Loop code always
executes one

fewer time than
the condition

check.

Depends on how
sorted array is

31

1.FUNCTION InsertionSort(array)
2. j = 1
3. WHILE j < array.length
4. key = array[j]
5. i = j - 1
6. WHILE i ≥ 0 && array[i] > key
7. array[i + 1] = array[i]
8. i = i - 1
9. array[i + 1] = key
10. j = j + 1
11. RETURN array

Cost
1. 0
2. 1
3. 2
4. 2
5. 2
6. 4
7. 4
8. 2
9. 3
10. 2
11. 1

Executions
0
1
n

n - 1
n - 1

(n - 1)x
(n - 1)(x - 1)
(n - 1)(x - 1)

n - 1
n - 1
1

Loop code always
executes one

fewer time than
the condition

check.

Depends on how
sorted array is

32

1.FUNCTION InsertionSort(array)
2. j = 1
3. WHILE j < array.length
4. key = array[j]
5. i = j - 1
6. WHILE i ≥ 0 && array[i] > key
7. array[i + 1] = array[i]
8. i = i - 1
9. array[i + 1] = key
10. j = j + 1
11. RETURN array

Cost
1. 0
2. 1
3. 2
4. 2
5. 2
6. 4
7. 4
8. 2
9. 3
10. 2
11. 1

Executions
0
1
n

n - 1
n - 1

(n - 1)x
(n - 1)(x - 1)
(n - 1)(x - 1)

n - 1
n - 1
1

Loop code always
executes one

fewer time than
the condition

check.

Depends on how
sorted array is

What is the total running time (add up all operations)?

33

1.FUNCTION InsertionSort(array)
2. j = 1
3. WHILE j < array.length
4. key = array[j]
5. i = j - 1
6. WHILE i ≥ 0 && array[i] > key
7. array[i + 1] = array[i]
8. i = i - 1
9. array[i + 1] = key
10. j = j + 1
11. RETURN array

Cost
1. 0
2. 1
3. 2
4. 2
5. 2
6. 4
7. 4
8. 2
9. 3
10. 2
11. 1

Executions
0
1
n

n - 1
n - 1

(n - 1)x
(n - 1)(x - 1)
(n - 1)(x - 1)

n - 1
n - 1
1

Loop code always
executes one

fewer time than
the condition

check.

Depends on how
sorted array is

Total Running Time = 1 + 2n + (n – 1)(2 + 2 + 4x + (x – 1)(4 + 2) + 3 + 2) + 1
= 10nx + 5n – 10x – 1

What is the total running time (add up all operations)?

35

1.FUNCTION InsertionSort(array)
2. j = 1
3. WHILE j < array.length
4. key = array[j]
5. i = j - 1
6. WHILE i ≥ 0 && array[i] > key
7. array[i + 1] = array[i]
8. i = i - 1
9. array[i + 1] = key
10. j = j + 1
11. RETURN array

Cost
1. 0
2. 1
3. 2
4. 2
5. 2
6. 4
7. 4
8. 2
9. 3
10. 2
11. 1

Executions
0
1
n

n - 1
n - 1

(n - 1)x
(n - 1)(x - 1)
(n - 1)(x - 1)

n - 1
n - 1
1

Loop code always
executes one

fewer time than
the condition

check.

Depends on how
sorted array is

Total Running Time = 1 + 2n + (n – 1)(2 + 2 + 4x + (x – 1)(4 + 2) + 3 + 2) + 1
= 10nx + 5n – 10x – 1
= 10n + 5n – 10 – 1
= 15n – 11

What is the best-case scenario? array is already sorted x = ?

x = 1

Is “- 11” a problem? Negative time?
36

1.FUNCTION InsertionSort(array)
2. j = 1
3. WHILE j < array.length
4. key = array[j]
5. i = j - 1
6. WHILE i ≥ 0 && array[i] > key
7. array[i + 1] = array[i]
8. i = i - 1
9. array[i + 1] = key
10. j = j + 1
11. RETURN array

Cost
1. 0
2. 1
3. 2
4. 2
5. 2
6. 4
7. 4
8. 2
9. 3
10. 2
11. 1

Executions
0
1
n

n - 1
n - 1

(n - 1)x
(n - 1)(x - 1)
(n - 1)(x - 1)

n - 1
n - 1
1

Loop code always
executes one

fewer time than
the condition

check.

Depends on how
sorted array is

Total Running Time = 1 + 2n + (n – 1)(2 + 2 + 4x + (x – 1)(4 + 2) + 3 + 2) + 1
= 10nx + 5n – 10x – 1
= 5n2 + 5n – 5n – 1
= 5n2 – 1

What is the worst-case scenario? array is reverse sorted x = ?

x = n/2 on average

37

Best, Worst, and Average

We usually concentrate on worst-case
• Gives an upper bound on the running time for any input
• The worst case can occur fairly often
• The average case is often relatively as bad as the worst case

38

Summary

• Introductions

• (Difficult) Exercise

• Specify an algorithm

• Prove correctness

• Analyze total running time

39

