\qquad
\qquad

Name: \qquad
\qquad

Hash Table Collision Probabilities

1. Consider n people with birthdays distributed uniformly at random.

How large does n need to be before there is at least a 50% chance that two people have the same birthday? (Same question as: How many objects need to be inserted before there is a 50% chance of a collision?)
2. Let's say that we have an array with 100 buckets. What is the probability of a collision if we have a perfect hash function (generates hash values uniformly at random) and we try to store (note that $\prod_{i=1}^{x} \frac{n-i}{n} \sim e^{-x(x-1) / 2 n}$):

- 10 values
- 20 values,
- 30 values

