Lecture 7: Parsers & Lambda Calculus

CSC 131
Spring, 2019
Kim Bruce

Homework

• First line:
 - module Hmwk3 where
 - Next line should be name as comment
 - Name of program file should be Hmwk3.hs

Problems

• How do we select which production to use when alternatives?
• Left-recursive - never terminates

Rewrite Grammar

<exp> ::= <term> <termTail> (1)
<termTail> ::= <addop> <term> <termTail> (2)
| ε (3)
<term> ::= <factor> <factorTail> (4)
<factorTail> ::= <mulop> <factor> <factorTail> (5)
| ε (6)
<factor> ::= (<exp>) (7)
| NUM (8)
| ID (9)
<addop> ::= + | - (10)
<mulop> ::= * | / (11)

No left recursion
How do we know which production to take?
Predictive Parsing

Goal: \(a_1a_2...a_n \)

\[
S \rightarrow \alpha \\
... \\
\rightarrow a_1a_2X\beta
\]

Want next terminal character derived to be \(a_3 \)

Need to apply a production \(X ::= \gamma \) where

1) \(\gamma \) can eventually derive a string starting with \(a_3 \) or
2) If \(X \) can derive the empty string, and also
 if \(\beta \) can derive a string starting with \(a_3 \).

First & Follow

Intuition:

- \(b \in \text{First}(X) \) iff there is a derivation \(X \rightarrow^* b\omega \) for some \(\omega \).
 - Let \(X \rightarrow \gamma \) be first step
 - A terminal \(b \in \text{Follow}(X) \) iff there is a derivation \(S \rightarrow^* vXb\omega \) for some \(v \) and \(\omega \).
 - Only used if \(X \rightarrow^* \varepsilon \)

Using First & Follow

- If next character to be matched is \(b \) and \(X \) is left-most non-terminal
 - if \(b \in \text{First}(X) \), apply \(X \rightarrow \gamma \) as first step to derive \(b \)
 - if \(X \rightarrow^* \varepsilon \) and \(b \in \text{Follow}(X) \) then apply first step in derivation of \(\varepsilon \)
 - If neither then stuck, if both then ambiguous

First for Arithmetic

FIRST(<addop>) = \{ +, - \}
FIRST(<mulop>) = \{ *, / \}
FIRST(<factor>) = \{ (, NUM, ID \}
FIRST(<term>) = \{ (, NUM, ID \}
FIRST(<exp>) = \{ (, NUM, ID \}
FIRST(<termTail>) = \{ +, -, \varepsilon \}
FIRST(<factorTail>) = \{ *, /, \varepsilon \}
Follow for Arithmetic

FOLLOW(<exp>) = \{ EOF, \}
FOLLOW(<termTail>) = FOLLOW(<exp>) = \{ EOF, \}
FOLLOW(<term>) = FIRST(<termTail>) ∪ FOLLOW(<exp>) ∪ FOLLOW(<termTail>)
\{ +, -, EOF, \}
FOLLOW(<factorTail>) = \{ +, -, EOF, \}
FOLLOW(<factor>) = \{ *, /, +, - , EOF \}
FOLLOW(<addop>) = \{ , NUM, ID \}
FOLLOW(<mulop>) = \{ , NUM, ID \}

Only needed to calculate for <termTail>, <factorTail> !

Predictive Parsing, redux

Goal: a₁, a₂, ..., aₙ

S → α
...
→ a₁a₂Xβ

Want next terminal character derived to be a₃

Need to apply a production X ::= γ where
1) γ can eventually derive a string starting with a₃ or
2) If X can derive the empty string, then see if β can derive a string starting with a₃.

Building Table

- Put X ::= α in entry (X,a) if either
 - a in First(α), or
 - ε in First(α) and a in Follow(X)

- Consequence: X ::= α in entry (X,a) iff there is a derivation s.t. applying production can eventually lead to string starting with a.

Need Unambiguous

- No table entry should have more than one production to ensure it’s unambiguous, as otherwise we don’t know which rule to apply.

- Laws of predictive parsing:
 - If A ::= α₁ | ... | αₙ then for all i ≠ j,
 First(αᵢ) ∩ First(αⱼ) = ∅.
 - If X →* ε, then First(X) ∩ Follow(X) = ∅.
Laws of predictive parsing:
- If $A ::= \alpha_i \mid \ldots \mid \alpha_n$ then for all $i \neq j$,
 $\text{First}(\alpha_i) \cap \text{First}(\alpha_j) = \emptyset$.
- If $X \rightarrow^* \varepsilon$, then $\text{First}(X) \cap \text{Follow}(X) = \emptyset$.

2nd is OK for arithmetic:
- $\text{FIRST}(<\text{termTail}>) = \{+, -, \varepsilon\}$
- $\text{FOLLOW}(<\text{termTail}>) = \{\text{EOF}\}$
- $\text{FIRST}(<\text{factorTail}>) = \{\ast, /, \varepsilon\}$
- $\text{FOLLOW}(<\text{factorTail}>) = \{+, -, \text{EOF}\}$

See Haskell Recursive Descent Parser, ParseArith.hs on web page

getTokens ::

See ArithParse.hs

<table>
<thead>
<tr>
<th>Non-terminals</th>
<th>ID</th>
<th>NUM</th>
<th>Addop</th>
<th>Mulop</th>
<th>(</th>
<th>)</th>
<th>EOF</th>
</tr>
</thead>
<tbody>
<tr>
<td><exp></td>
<td>1</td>
<td>1</td>
<td>I</td>
<td>I</td>
<td></td>
<td></td>
<td>EOF</td>
</tr>
<tr>
<td><termTail></td>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><term></td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><factTail></td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><factor></td>
<td>9</td>
<td>8</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><addop></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><mulop></td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Read off from table which production to apply!

More Options

- Stack-based parsers (pda’s)
- Parser Combinators
 - Domain specific language for parsing.
 - Even easier to tie to grammar than recursive descent
 - Build into Haskell and Scala, definable elsewhere
 - Talk about when cover Scala
Parser Combinators in Scala

```scala
def multOp = ("*" | "/")
def addOp = ("+" | "-")
def factor = "(" -> expr <-> ")" | numericLit ^^ {...}
def term = factor - (factorTail*) ^^ {...}
def factorTail = multOp - factor ^^ {...}
def expr = term - (termTail*) ^^ {...}
def termTail = addOp - term ^^ {...}
```

Where are we?

Formal Syntax

- Syntax:
 - Readable, writable, easy to translate, unambiguous, ...

- Formal Grammars:
 - Backus & Naur, Chomsky
 - First used in ALGOL 60 Report - formal description
 - Generative description of language.

- Language is set of strings. (E.g. all legal C++ programs)

Example

```plaintext
<exp>     => <term> | <exp> <addop> <term>
<term>    => <factor> | <term> <multop> <factor>
<factor>  => <id> | <literal> | ( <exp> )
<id>      => a | b | c | d
<literal> => <digit> | <digit> <literal>
<digit>   => 0 | 1 | 2 | ... | 9
<addop>   => + | - | or
<multop>  => * | / | div | mod | and
```
Extended BNF

- Extended BNF handy:
 - item enclosed in square brackets is optional
 * `<conditional> ⇒ if <expression> then <statement> [else <statement>]`
 - item enclosed in curly brackets means zero or more occurrences
 * `<literal> ⇒ <digit> { <digit> }`

Syntax Diagrams

- Syntax diagrams - alternative to BNF.
 - Syntax diagrams are never directly recursive, use "loops" instead.

Ambiguity

<statement> ⇒ <unconditional> | <conditional>

<unconditional> ⇒ <assignment> | <for loop> | "" { <statement> } ""

<conditional> ⇒ if (<expression>) <statement> |
 if (<expression>) <statement> |
 else <statement>

How do you parse:

```
if (exp1)
  if (exp2)
    stat1;
  else
    stat2;
else
```

Resolving Ambiguity

- Pascal, C, C++, and Java rule:
 - else attached to nearest then.
 - to get other form, use { ... }

- Modula-2 and Algol 68
 - No "{, only "}" (except write as "end")

- Not a problem in LISP/Racket/ML/Haskell conditional expressions

- Ambiguity in general is undecidable
Chomsky Hierarchy

- Chomsky developed mathematical theory of programming languages:
 - type 0: recursively enumerable
 - type 1: context-sensitive
 - type 2: context-free
 - type 3: regular
- BNF = context-free, recognized by pda

Beyond Context-Free

- Not all aspects of PL's are context-free
 - Declare before use, goto target exist
- Formal description of syntax allows:
 - programmer to generate syntactically correct programs
 - parser to recognize syntactically correct programs
- Parser-generators: LEX, YACC, ANTLR, etc.
 - formal spec of syntax allows automatic creation of recognizers

Defining Functions

- In math and LISP:
 - \(f(n) = n \times n \)
 - (define (f n) (* n n))
 - (define f (lambda (n) (* n n)))
- In lambda calculus
 - \(\lambda n. n \times n \)
 - ((\(\lambda n. n \times n\)) 12) ⇒ 144

Specifying Semantics:

Lambda Calculus
Pure Lambda Calculus

- Terms of pure lambda calculus
 - $M ::= v \mid (M \ M) \mid \lambda x. M$
 - Impure versions add constants, but not necessary!
- Left associative: $M \ N \ P = (M \ N) \ P$
- Computation based on substituting actual parameter for formal parameters

Free Variables

- Substitution easy to mess up!
- Def: If M is a term, then $\text{FV}(M)$, the collection of free variables of M, is defined as follows:
 - $\text{FV}(x) = \{x\}$
 - $\text{FV}(M \ N) = \text{FV}(M) \cup \text{FV}(N)$
 - $\text{FV}(\lambda x. M) = \text{FV}(M) - \{x\}$

Substitution

- Write $[N/x] M$ to denote result of replacing all free occurrences of x by N in expression M.
 - $[N/x] x = N$
 - $[N/x] y = y$, if $y \neq x$
 - $[N/x] (L \ M) = ([N/x] L) \ ([N/x] M)$
 - $[N/x] (\lambda y. M) = \lambda y. ([N/x] M)$, if $y \neq x$ and $y \notin \text{FV}(N)$
 - $[N/x] (\lambda x. M) = \lambda x. M$

Computation Rules

- Reduction rules for lambda calculus:
 - $(\alpha) \ \lambda x. M \rightarrow \lambda y. ([y/x] M)$, if $y \notin \text{FV}(M)$.

 change name of parameters if new not capture old

 - $(\beta) \ (\lambda x. M) \ N \rightarrow [N/x] M$.

 computation by subst function argument for formal parameter

 - $(\eta) \ \lambda x. (M x) \rightarrow M$.

 Optional rule to get rid of excess λ’s