Lecture 15: Run-Time Stack

CSC 131
Kim Bruce

Midterm

- Open book, notes, course web pages
- The exam will be available by 9 a.m. Monday and must be turned in electronically by midnight Thursday.

Midterm Topics

- Haskell (including monads/type-classes)
- Language implementation
 - lexing/parsing/type-checking & inference/interpreters
- Lambda calculus
- Run-time memory management
 - Run-time stack (no function arguments/results)
 - heap on final

Function Parameters

- Harder to cope with because need environment defined in. Two problems:
 - Downward funarg:

    ```
    x = 47
    f y = x + y;
    g(h) = let val x = 17
             in h(1)
    > g(f)
    ```
 - When evaluate f(t), is in environment where x = 17!
- Return function value -- loses env of definition
Represent function values as closures

- Function value represented as a pair of
 - Environment (pointer to run-time stack where defined)
 - Code for function
- When call a function (passed as closure)
 - Allocated activation record for function
 - Set access link in activation record using value in closure.

Function as Return Value

fun make_counter(init: int) =
let
 val count = ref init
 fun counter(inc:int) =
 (count := !count + inc; !count)
 in
 counter
 end;
val c = make_counter(1);
c(2) + c(2);

\textit{c needs access to count when applied! Stack discipline does not work.}
When make assignment \(c = \text{mk}_\text{ctr}(i) \),
pop off activation record for \(\text{mk}_\text{ctr}(i) \) ...

Problem

- When call \(c(2) \), activation record for
 \(\text{make}_\text{counter} \) is gone.
- Hence no access to \(\text{count} \)
- To solve, must keep activation records around for functions that return functions
- Garbage collect them when no longer reference to them!

Dynamic Languages

- Dynamic scope -- no longer need static/access link in activation record
 - look for closest activation record with vble
 - must be able to find names dynamically
- Dynamic types -- associate type descriptor w/ values of variables
- Late binding costs -- more space, slower access
- Benefits - more flexibility
Heap Management

- Stack doesn’t work in some circumstances
 - functions returning functions
 - dynamically allocated memory
- Heap allows dynamic allocation/deallocation of memory.
 - Manually
 - Automatically

Managing the Heap

- Heap maintained as stack of blocks of memory
- Need strategy to handle requests and returns.
 - Best fit
 - First fit
- Fragmentation is serious problem when return
- Coalesce blocks on heap
- May need to compact memory occasionally

Automating Dispose

- Garbage collection (lazy)
 - LISP by McCarthy
- Reference counting (eager):
 - Keep track of number of refs to block of memory.
 - Return it when count is 0.
 - Disadvantages:
 - space and time overhead of keeping count,
 - circular structures.
 - Weak variant used in Objective C on iphone
 - Newest version automates it.
 - Python uses ref counting + GC for circular

Garbage Collection

- At a given point in execution of program P, memory location m is garbage if no continued execution of P from this point can access m.
- Automatic garbage collectors start with root set and search out all memory locations accessible from root set.
- Automatic garbage collectors necessarily conservative.
Mark and Sweep Collector

- Mark “alive” elements.
- Sweep through memory and reclaim garbage
- Problems:
 - Space for marks (and stack while marking)
 - Two sweeps through memory needed
 - Sweeping takes time proportional to memory size
- Used in Java 1.0, 1.1, but not later

Copying Collector

- Divide memory in half – working vs. free
- When working exhausted
 - Copy live nodes from working to free (use forwarding address)
 - Swap halves
- Evaluation:
 - Only looks at live cells, but can be incremental
 - Needs twice as much space, but respects cache
 - Allocation very cheap! Always one big block free
 - GC fast if most are dead

Copying Collector

- Only try to collect recently allocated blocks
 - Infant mortality - majority of blocks die young!
- Divide memory into two or more generations.
- Modern Java uses copying collector for youngest and older uses mark-compact scheme
 - Youngest gets lots of garbage quickly
 - Mark-compact doesn't move lots of older objects
 - Can now hand-tune GC

Memory as time passes ...
Implementing Parametric Polymorphism

Section 6.4.2 of text

Parametric Polymorphism Redux

- How do we implement polymorphic classes, functions, etc.
- Scheme, ML, Haskell, Clu (1974), Ada, C++, Eiffel, Java
- Efficient implementation depends on shared code.

C++ templates

```cpp
template <typename T>
class Stack {
private:
    std::vector<T> elems;   // elements

public:
    void push(T const&);    // push element
    void pop();              // pop element
    T top() const;           // return top element
    bool empty() const {    // return if stack empty
        return elems.empty();
    }
};
```

Different T’s take different amounts of space, so macro-expand at compile time

Easier if Uniform Reps

- LISP, Scheme, ML, Haskell, Clu, Eiffel, and Java have uniform reps for values so can share same code.
- Ada requires different implementation, but still type-checks statically.
- Automatic boxing and unboxing helps with primitives.