Lecture 16: Optimization with Caches
Review: Memory Hierarchy

L0: Regs

L1: L1 cache (SRAM)
 - CPU registers hold words retrieved from the L1 cache.

L2: L2 cache (SRAM)
 - L1 cache holds cache lines retrieved from the L2 cache.
 - L2 cache holds cache lines retrieved from L3 cache

L3: L3 cache (SRAM)
 - L3 cache holds cache lines retrieved from main memory.

L4: Main memory (DRAM)
 - Main memory holds disk blocks retrieved from local disks.

L5: Local secondary storage (local disks)
 - Local disks hold files retrieved from disks on remote servers

L6: Remote secondary storage (e.g., cloud, web servers)

Smaller, faster, and costlier (per byte) storage devices

Larger, slower, and cheaper (per byte) storage devices
Review: Principle of Locality

Programs tend to use data and instructions with addresses near or equal to those they have used recently

- **Temporal locality:**
 - Recently referenced items are likely to be referenced again in the near future

- **Spatial locality:**
 - Items with nearby addresses tend to be referenced close together in time
Review: An Example Cache

E = 2: Two lines per set
Assume: cache block size 8 bytes

Address of data: tag | index | offset
Typical Intel Core i7 Hierarchy

Processor package

Core 0
- Regs
- L1 d-cache
- L1 i-cache
- L2 unified cache
- L3 unified cache (shared by all cores)

Core 3
- Regs
- L1 d-cache
- L1 i-cache
- L2 unified cache

L1 i-cache and d-cache: 32 KB, 8-way, Access: 4 cycles
L2 unified cache: 256 KB, 8-way, Access: 10 cycles
L3 unified cache: 8 MB, 16-way, Access: 40-75 cycles
Block size: 64 bytes for all caches.
Cache Performance Metrics

- **Miss Rate**
 - Fraction of memory references not found in cache (misses / accesses)
 - Typically 3-10% for L1
 - can be quite small (e.g., < 1%) for L2, depending on size, etc.

- **Hit Time**
 - Time to deliver a line in the cache to the processor
 - includes time to determine whether the line is in the cache
 - Typically 4 clock cycles for L1, 10 clock cycles for L2

- **Miss Penalty**
 - Additional time required because of a miss
 - typically 50-200 cycles for main memory (Trend: increasing!)
Memory Performance with Caching

- **Read throughput (aka read bandwidth):** Number of bytes read from memory per second (MB/s)

- **Memory mountain:** Measured read throughput as a function of spatial and temporal locality.
 - Compact way to characterize memory system performance.
Memory Mountain Test Function

Call `test()` with many combinations of `elems` and `stride`.

For each `elems` and `stride`:

1. Call `test()` once to warm up the caches.

2. Call `test()` again and measure the read throughput (MB/s)
The Memory Mountain

Core i7 Haswell
2.1 GHz
32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache
64 B block size

Aggressive prefetching

Ridges of temporal locality

Slopes of spatial locality

Read throughput (MB/s)

Stride (x8 bytes)

Size (bytes)
Exercise 1: Locality

• Which of the following functions is better in terms of locality with respect to array src?

```c
void copyji(int src[2048][2048],
            int dst[2048][2048])
{
    int i,j;
    for (j = 0; j < 2048; j++)
        for (i = 0; i < 2048; i++)
            dst[i][j] = src[i][j];
}
```

```c
void copyij(int src[2048][2048],
            int dst[2048][2048])
{
    int i,j;
    for (i = 0; i < 2048; i++)
        for (j = 0; j < 2048; j++)
            dst[i][j] = src[i][j];
}
```
Exercise 1: Locality

Which of the following functions is better in terms of locality with respect to array `src`?

```c
void copyji(int src[2048][2048], int dst[2048][2048])
{
    int i, j;
    for (j = 0; j < 2048; j++)
        for (i = 0; i < 2048; i++)
            dst[i][j] = src[i][j];
}
```

```c
void copyij(int src[2048][2048], int dst[2048][2048])
{
    int i, j;
    for (i = 0; i < 2048; i++)
        for (j = 0; j < 2048; j++)
            dst[i][j] = src[i][j];
}
```

81.8ms 4.3ms

2.0 GHz Intel Core i7 Haswell
Writing Cache-Friendly Code

• Make the common case go fast
 • Focus on the inner loops of the core functions

• Minimize the misses in the inner loops
 • Repeated references to variables are good (temporal locality)
 • Stride-1 reference patterns are good (spatial locality)
Example: Matrix Multiplication

- Multiply $N \times N$ matrices
- Matrix elements are doubles (8 bytes)
- $O(N^3)$ total operations
- N reads per source element
- N values summed per destination

```c
/* ijk */
for (i=0; i<n; i++)  {
    for (j=0; j<n; j++) {
        sum = 0.0;
        for (k=0; k<n; k++){
            sum += a[i][k] * b[k][j];
        }
        c[i][j] = sum;
    }
}
```
Miss Rate Analysis for Matrix Multiply

• Assume:
 • Block size = 32B (big enough for four doubles)
 • Matrix dimension (N) is very large
 • Approximate 1/N as 0.0
 • Cache is not even big enough to hold multiple rows

• Analysis Method:
 • Look at access pattern of inner loop

\[C_{i,j} = A_{i,k} \times B_{k,j} \]
Layout of C Arrays in Memory (review)

- C arrays allocated in row-major order
 - each row in contiguous memory locations

- Stepping through columns in one row:
 - accesses successive elements
 - if data block size (B) > sizeof(a_{ij}) bytes, exploit spatial locality
 - miss rate = sizeof(a_{ij}) / B

- Stepping through rows in one column:
 - accesses distant elements
 - no spatial locality!
 - miss rate = 1 (i.e. 100%)
Matrix Multiplication (ijk) (jik is similar)

/* ijk */
for (i=0; i<n; i++) {
 for (j=0; j<n; j++) {
 sum = 0.0;
 for (k=0; k<n; k++)
 sum += a[i][k] * b[k][j];
 c[i][j] = sum;
 }
}

Misses per inner loop iteration:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>1.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

2 loads, no stores per inner loop iteration
Exercise 2: Matrix Multiplication

/* kij */
for (k=0; k<n; k++) {
 for (i=0; i<n; i++) {
 r = a[i][k];
 for (j=0; j<n; j++)
 c[i][j] += r * b[k][j];
 }
}

/* jki */
for (j=0; j<n; j++) {
 for (k=0; k<n; k++) {
 r = b[k][j];
 for (i=0; i<n; i++)
 c[i][j] += a[i][k] * r;
 }
}
Exercise 2: Matrix Multiplication

/* kij */
for (k=0; k<n; k++) {
 for (i=0; i<n; i++) {
 r = a[i][k];
 for (j=0; j<n; j++)
 c[i][j] += r * b[k][j];
 }
}

Inner loop:
(i,k) (k,*) (i,*)
A B C
2 loads, 1 store per inner loop iteration

Misses per inner loop iteration:
 A B C
 0.0 0.25 0.25

/* jki */
for (j=0; j<n; j++) {
 for (k=0; k<n; k++) {
 r = b[k][j];
 for (i=0; i<n; i++)
 c[i][j] += a[i][k] * r;
 }
}

Inner loop: (*,k) (k,j) (*,j)
A B C
2 loads, 1 store per inner loop iteration

Misses per inner loop iteration:
 A B C
 1.0 0.0 1.0
Summary of Matrix Multiplication

for (i=0; i<n; i++) {
 for (j=0; j<n; j++) {
 sum = 0.0;
 for (k=0; k<n; k++)
 sum += a[i][k] * b[k][j];
 c[i][j] = sum;
 }
}

for (k=0; k<n; k++) {
 for (i=0; i<n; i++) {
 r = a[i][k];
 for (j=0; j<n; j++)
 c[i][j] += r * b[k][j];
 }
}

for (j=0; j<n; j++) {
 for (k=0; k<n; k++) {
 r = b[k][j];
 for (i=0; i<n; i++)
 c[i][j] += a[i][k] * r;
 }
}

ijk (& jik):
- 2 loads, 0 stores
- misses/iter = 1.25

kij (& ikj):
- 2 loads, 1 store
- misses/iter = 0.5

jki (& kji):
- 2 loads, 1 store
- misses/iter = 2.0
Matrix Multiply Performance

Core i7

Pentium III Xeon

Cycles per inner loop iteration

Array size (n)

Cycles/iteration

Array size (n)
Can we do better?

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
 int i, j, k;
 for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 for (k = 0; k < n; k++)
 c[i*n + j] += a[i*n + k] * b[k*n + j];
}
Cache Miss Analysis

• Assume:
 • Matrix elements are doubles
 • Cache block = 4 doubles
 • Cache size \(C \ll n \) (much smaller than \(n \))

• First iteration:
 • \(\frac{n}{4} + n = \frac{5n}{4} \) misses

• Afterwards in cache: (schematic)
Cache Miss Analysis

• Assume:
 • Matrix elements are doubles
 • Cache block = 4 doubles
 • Cache size $C <\ll n$ (much smaller than n)

• Second iteration:
 • $n/4 + n = 5n/4$ misses

• Total misses:
 • $5n/4 \times n^2 = (5/4) \times n^3$
Blocked Matrix Multiplication

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
 int i, j, k;
 for (i = 0; i < n; i+=B)
 for (j = 0; j < n; j+=B)
 for (k = 0; k < n; k+=B)
 /* B x B mini matrix multiplications */
 for (i1 = i; i1 < i+B; i++)
 for (j1 = j; j1 < j+B; j++)
 for (k1 = k; k1 < k+B; k++)
 c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];
}

Block size B x B
Cache Miss Analysis

- Assume:
 - Cache block = 4 doubles
 - Cache size $C \ll n$ (much smaller than n)
 - Three blocks fit into cache: $3B^2 < C$

- First (block) iteration:
 - $B^2/4$ misses for each block
 - $2n/B \times B^2/4 = nB/2$ (omitting matrix c)

- Afterwards in cache (schematic)
Cache Miss Analysis

• Assume:
 • Cache block = 4 doubles
 • Cache size C << n (much smaller than n)
 • Three blocks fit into cache: $3B^2 < C$

• Second (block) iteration:
 • Same as first iteration
 • $2n/B \times \frac{B^2}{4} = \frac{nB}{2}$

• Total misses:
 • $\frac{nB}{2} \times \frac{(n/B)^2}{2} = \frac{n^3}{2B}$

Block size $B \times B$
Blocking Summary

- No blocking: $(5/4) \times n^3$
- Blocking: $n^3 / (2B)$

- Suggest largest possible block size B, but limit $3B^2 < C$!

- Reason for dramatic difference:
 - Matrix multiplication has inherent temporal locality:
 - Input data: $3n^2$, computation $2n^3$
 - Every array elements used $O(n)$ times!
 - But program has to be written properly
A reality check

- This analysis only holds on some machines!

- Intel Core i7 does aggressive pre-fetching for one-stride programs, so blocking doesn't actually improve performance

- But on a Pentium III Xeon:
And that's the end of Part 1
Exercise 3: Feedback

1. Rate how well you think this recorded lecture worked
 1. Better than an in-person class
 2. About as well as an in-person class
 3. Less well than an in-person class, but you still learned something
 4. Total waste of time, you didn't learn anything

2. How much time did you spend on this video lecture (including time spent on exercises)?

3. Do you have any questions that you would like me to address in this week's problem session?

4. Do you have any other comments or feedback?