Representing Integers

• unsigned:

\[
\text{UnsignedValue}(x) = \sum_{j=0}^{w-1} x_j \cdot 2^j
\]

• signed (two's complement):

\[
\text{SignedValue}(x) = -x_{w-1} \cdot 2^{w-1} + \sum_{j=0}^{w-2} x_j \cdot 2^j
\]

Note: to compute \(-x\) for a signed int \(x\), flip all the bits, then add 1

\[x + \sim x = 11 \ldots 1 = -1, \text{ so } x + (\sim x + 1) = 0\]
Example: Three-bit integers

<table>
<thead>
<tr>
<th>Unsigned</th>
<th>Signed</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>7</td>
<td>111</td>
<td>011</td>
<td>011</td>
<td>011</td>
<td>011</td>
<td>011</td>
</tr>
<tr>
<td>110</td>
<td>6</td>
<td>110</td>
<td>010</td>
<td>010</td>
<td>010</td>
<td>010</td>
<td>010</td>
</tr>
<tr>
<td>101</td>
<td>5</td>
<td>101</td>
<td>001</td>
<td>001</td>
<td>001</td>
<td>001</td>
<td>001</td>
</tr>
<tr>
<td>100</td>
<td>4</td>
<td>100</td>
<td>000</td>
<td>000</td>
<td>000</td>
<td>000</td>
<td>000</td>
</tr>
<tr>
<td>011</td>
<td>3</td>
<td>011</td>
<td>111</td>
<td>111</td>
<td>111</td>
<td>111</td>
<td>111</td>
</tr>
<tr>
<td>010</td>
<td>2</td>
<td>010</td>
<td>110</td>
<td>110</td>
<td>110</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>001</td>
<td>1</td>
<td>001</td>
<td>101</td>
<td>101</td>
<td>101</td>
<td>101</td>
<td>101</td>
</tr>
<tr>
<td>000</td>
<td>0</td>
<td>000</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

- The high-order bit is the *sign bit*.
- The largest unsigned value is $11\ldots1$, UMax.
- The signed value for -1 is always $11\ldots1$.
- Signed values range between TMin and TMax.

This representation of signed values is called *two’s complement*.
FRACTIONAL NUMBERS
Fractional binary numbers

• What is 1011.101_2?
Fractional Binary Numbers

- **Representation**
 - Bits to right of “binary point” represent fractional powers of 2
 - Represents rational number: $\sum_{k=-j}^{i} (b_k \cdot 2^k)$
Exercise: Fractional Binary Numbers

- Translate the following fractional numbers to their binary representation
 - 5 3/4
 - 2 7/8
 - 1 7/16

- Observations
 - Divide by 2 by shifting right (unsigned)
 - Multiply by 2 by shifting left
 - Numbers of form 0.111111..._2 are just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$
Representable Numbers

• Limitation #1
 • Can only exactly represent numbers of the form $x/2^k$
 • Other rational numbers have repeating bit representations
 • Value Representation
 • $1/3$ \[0.0101010101[01]..._2\]
 • $1/5$ \[0.001100110011[0011]..._2\]
 • $1/10$ \[0.0001100110011[0011]..._2\]

• Limitation #2
 • Just one setting of binary point within the w bits
 • Limited range of numbers (very small values? very large?)
Floating Point Representation

• Numerical Form: \((-1)^s \cdot M \cdot 2^E\)
 • Sign bit \(s\) determines whether number is negative or positive
 • Significand \(M\) normally a fractional value in range \([1.0, 2.0)\)
 • Exponent \(E\) weights value by power of two

• Encoding:

<table>
<thead>
<tr>
<th></th>
<th>exp = (e_{k-1} \ldots e_1 e_0)</th>
<th>frac = (f_{n-1} \ldots f_1 f_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- \(s\) is sign bit \(s\)
- exp field encodes \(E\) (but is not equal to \(E\))
 - normally \(E = e_{k-1} \ldots e_1 e_0 - (2^{k-1} - 1)\) \(\text{bias}\)
- frac field encodes \(M\) (but is not equal to \(M\))
 - normally \(M = 1. f_{n-1} \ldots f_1 f_0\)

Float (32 bits):
- \(k = 8, n = 23\)
- bias = 127

Double (64 bits):
- \(k = 11, n = 52\)
- bias = 1023
Exercise: Floats

- What fractional number is represented by the bytes 0x0000c03e?
Normalized and Denormalized

\[(-1)^s \cdot M \cdot 2^E \]

Normalized Values
- exp is neither all zeros nor all ones
- normal case
- exponent is defined as \(E = e_{k-1} \ldots e_1 e_0 - \text{bias} \), where bias = \(2^k - 1 \) (e.g., 127 for float or 1023 for double)
- significand is defined as \(M = 1.f_{n-1}f_{n-2} \ldots f_0 \)

Denormalized Values
- exp is either all zeros or all ones
- if all zeros: \(E = 1 - \text{bias} \) and \(M = 0.f_{n-1}f_{n-2} \ldots f_0 \)
- if all ones: infinity (if f is all zeros) or NaN
Visualization: Floating Point Encodings

-∞ → −Normalized → −Denorm → +Denorm → +Normalized → +∞

NaN → −0 → +0 → NaN
Floating Point in C

- C Guarantees Two Levels
 - `float` single precision
 - `double` double precision

- Conversions/Casting
 - Casting between `int`, `float`, and `double` changes bit representation
 - `double/float → int`
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
 - `int → double`
 - Exact conversion, as long as `int` has ≤ 53 bit word size
 - `int → float`
 - Will round
STRUCTS
Structs

- Heterogeneous records, like Java objects
- Example:
  ```c
  struct rec {
    int a[4];
    size_t i;
    struct rec *next;
  };
  ```

- Usage:
  ```c
  struct rec c;
  c.a[0] = 42;
  c.next = NULL;
  ```

- Pointers:
  ```c
  struct rec *p = malloc(sizeof(struct rec));
  p->a[0] = 42;
  p->next = NULL;
  ```

 `p->next` is an abbreviation for `(*p).next`
Following Linked List

```c
struct rec {
    int a[4];
    size_t i;
    struct rec *next;
};

void set_val(struct rec *r, int val) {
    while (r) {
        int i = r->i;
        r->a[i] = val;
        r = r->next;
    }
}
```
Structure Representation

- Structure represented as block of memory
 - Big enough to hold all of the fields
- Fields ordered according to declaration
 - Even if another ordering could yield a more compact representation
- Compiler determines overall size + positions of fields
 - Machine-level program has no understanding of the structures in the source code

```c
struct rec {
    int a[4];
    size_t i;
    struct rec *next;
};
```
Structures & Alignment

- **Unaligned Data**

- **Aligned Data**
 - Primitive data type requires K bytes
 - Address must be multiple of K

```c
struct S1 {  
    char c;
    int i[2];
    double v;
};
```
Alignment Principles

- **Aligned Data**
 - Primitive data type requires K bytes
 - Address must be multiple of K
 - Required on some machines; advised on x86-64

- **Motivation for Aligning Data**
 - Memory accessed by (aligned) chunks of 4 or 8 bytes (system dependent)
 - Inefficient to load or store datum that spans quad word boundaries
 - Virtual memory trickier when datum spans 2 pages

- **Compiler**
 - Inserts gaps in structure to ensure correct alignment of fields
Specific Cases of Alignment (x86-64)

- 1 byte: `char`, ...
 - no restrictions on address
- 2 bytes: `short`, ...
 - lowest 1 bit of address must be 0_2
- 4 bytes: `int`, `float`, ...
 - lowest 2 bits of address must be 00_2
- 8 bytes: `double`, `long`, `char *`, ...
 - lowest 3 bits of address must be 000_2
- 16 bytes: `long double` (GCC on Linux)
 - lowest 4 bits of address must be 0000_2
Satisfying Alignment with Structures

- **Within structure:**
 - Must satisfy each element’s alignment requirement

- **Overall structure placement**
 - Each structure has alignment requirement K
 - $K = \text{Largest alignment of any element}$
 - Initial address & structure length must be multiples of K

- **Example:**
 - $K = 8$, due to `double` element

```
struct S1 {
    char c;
    int i[2];
    double v;
};
```
Arrays of Structures

- Overall structure length multiple of K
- Satisfy alignment requirement for every element

```c
struct S1 {
    char c;
    int i[2];
    double v;
};
```
Saving Space

- Put large data types first

```c
struct S2 {
    char c;
    int i;
    char d;
};
```

- Effect (K=4)

```
c i d 3 bytes
```

```
i c d 2 bytes
```

```c
struct S3 {
    int i;
    char c;
    char d;
};
```