Lecture 2: Representing Integers

CS 105 Spring 2026

Review: Abstraction

Review: Memory

_ bytes
- Memory is an array of<bie-

00110111

- A byte is a unit of eight bits

- An index into the array is an address,
location, or pointer 11010001

- Often expressed in hexadecimal

- We speak of the value in memory at
an address

- The value may be a single byte ...]

- ... or a multi-byte quantity starting
at that address 01101100

01010011

Review: Bits Require Interpretation

10001100 00001100 10101100 00000000
might be interpreted as

- The integer 3,485,745

- A floating point number close to 4.884569 x 10-3°
- The string “105”

- A portion of an image or video

- An address in memory

Representing Integers

- Arabic Numerals: 47

- Roman Numerals: XLVII

- Brahmi Numerals: H9)

- Tally Marks: J I i1 I U BT WA

Base-10 Integers

1000 (103) 100 (102) 10 (10") 1 (10%)
I N
0 0 0 5
0 0 4 7

Base-2 Integers (aka Binary Numbers)

128 (27) 64 (2% 32(25 16(2% 8(2%) 4(23 2(2) 1(29

Binary Numbers

- Decimal (Base-10):

1011

=1-1034+0-10%+1-101+1-10°
=1011

1011

- Binary (Base-2):

There are

=1-234+0-22+1-2v+1-2° 10 types
- 11 of people
in the world:

Those who
understand binary,
and those
who don’t.

IR
Exercise 1: Binary Numbers

- Consider the following four-bit binary values. What is the
(base-10) integer interpretation of these values?

1. 0001
2. 1010
3. 0111
4. 1111

Exercise 2: Binary Number Range

- What are the max number and min number that can be
represented by a w-bit binary number?

1. w=3
2. w=4

3. w=38

Unsigned Integers in C

C Data Type Size (bytes)

unsigned char 1

unsigned short

unsigned int

o |~ N

unsigned long

ASCII characters

IEEIEEIEEIEEIEEIE

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

00100001
00100010
00100011
00100100
00100101
00100110
00100111
00101000
00101001
00101010
00101011
00101100
00101101
00101110
00101111
00110000

© 00 N O o B W DN

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

00110001
00110010
00110011
00110100
00110101
00110110
00110111
00111000
00111001
00111010
00111011
00111100
00111101
00111110
00111111

01000000

T @@ m m O O W

T O Z2 Z r X <«

66
67
68
69
70
71
72
73
74
75
76
77
78
S
80

01000001
01000010
01000011
01000100
01000101
01000110
01000111
01001000
01001001
01001010
01001011
01001100
01001101
01001110
01001111
01010000

> —= — —m N <X X S < C 4 »

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

01010001
01010010
01010011
01010100
01010101
01010110
01010111
01011000
01011001
01011010
01011011
01011100
01011101
01011110
01011111

01100000

-~ dO QO O T

O Q@

98

99

100
101
102
103
104
105
106
107
108
109
110
111

112

011(
011(
011(
011(
011(
011(
0111
011(
011(
011(
011(
011(
011(
011
011
011°

Hexidecimal Numbers

00101100]00110101]00110000{11100001 lﬂ?@
1 | T | | || | | ||

2 C 3 5 3 0 e 1 N

2 2

3 3

4 4

Ox2c3530el 5 5

6 6

7 7

8 8

9 9

10 a

11 b

12 c

13 d

14 e

15 f

Exercise 3: Hexidecimal Numbers

- Consider the following hexidecimal values. What is the
representation of each value in binary?
1. Ox0a
2. ox11
3. ox2f

Endianness

47 vs 74

Endianness

- Big Endian: low-order bits go on the right (47)

- | tend to think in big endian numbers, so examples in class will
generally use this representation

- Networks generally use big endian (aka network byte order)

- Little Endian: low-order bits go on the left (74)
- Most modern machines use this representation

- | will try to always be clear about whether I'm using a big
endian or little endian representation

- When in doubt, ask!

IR
Arithmetic Logic Unit (ALU)

- circuit that performs bitwise operations and arithmetic on
iInteger binary types

Integer Integer
Operand Operand

v v

A N/ B
Status
Status
Opcode Y

Integer
Result

Bitwise vs Logical Operations in C

- Bitwise Operators &, |, ~, A
« View arguments as bit vectors
- operations applied bit-wise in parallel

- Logical Operators &&, ||, !
- View 0 as “False”
- View anything nonzero as “True”
- Always return O or 1
- Early termination

- Shift operators <<, >>

- Left shift fills with zeros
- For unsigned integers, right shift is logical (fills with zeros)

Exercise 4: Bitwise vs Logical Operations

Assume unsigned char data type (one byte). What do each
of the following expressions evaluate to (interpreted as
unsigned integers and expressed base-10)?

1. ~150
2. 1150

150 & 51
150 | 51

150 && 51
150 || 51

SR

7. 150 << 2
8. 150 >>2

i
Addition Example

- Compute 5 + 6 assuming all ints are stored as eight-bit (1
byte) unsigned values

1
oooo00101

+ 00000110
OO0O0OO0O10O11 =11 (Base-10)

Like you learned in grade school, only binary!
... and with a finite number of digits

IR
Addition Example with Overflow

- Compute 200 + 100 assuming all ints are stored as eight-
bit (1 byte) unsigned values

11
11001000

+ 01100100
00101100

44 (Base-10)

Like you learned in grade school, only binary!
... and with a finite number of digits

Error Cases (Unsigned Ints)

- Assume w-bit unsigned values

2% -1 2-(2% -1
® (.:)

QO

representable values

1
]

—_— D7

Possible values of x + y

x+y (normal) 3
. = dular addit
Xty {x + vy — 2% (overflow) } modHiAr aderon

- overflow has occurred iff x +y < x

IR
Exercise 5: Binary Addition

- Given the following 5-bit unsigned values, compute their
sum and indicate whether or not an overflow occurred

I A A

00010 00101
01100 00100
10100 10001

Multiplication Example

- Compute 5 x 6 assuming all ints are stored as eight-bit (1
byte) unsigned values

oOo000OOL1LO1
XO00000O110

ONONONONONONONS,

OO00OOO1LO1L
+00000101

00011110

30 (Base-10)

Like you learned in grade school, only binary!
... and with a finite number of digits

Multiplication Example

- Compute 200 x 3 assuming all ints are stored as eight-bit
(1 byte) unsigned values

11001000
X00000011

11001000
+ 11001000

01011000 -=88(Base-10)

Like you learned in grade school, only binary!
... and with a finite number of digits

Error Cases

- Assume w-bit unsigned values

2w —1 2¥-1)- (2" - 1)
@ o

A

]
presentable values

[Jeo)

r

— D7

Possible values of x %y

«x*y = (x-y) mod 2%

Exercise 6: Binary Multiplication

- Given the following 3-bit unsigned values, compute their
product and indicate whether or not an overflow occurred

x|y | xy loverflow?
100

101
010 011
111 010

I
Multiplying with Shifts

- Multiplication is slow

- Bit shifting is kind of like multiplication, and is often faster
e X*8=x<<3
e X*¥10=x<<3 +x<<1

- Most compilers will automatically replace multiplications
with shifts where possible

	Slide 1: Lecture 2: Representing Integers
	Slide 2: Review: Abstraction
	Slide 3: Review: Memory
	Slide 4: Review: Bits Require Interpretation
	Slide 5: Representing Integers
	Slide 6: Base-10 Integers
	Slide 7: Base-2 Integers (aka Binary Numbers)
	Slide 8: Binary Numbers
	Slide 9: Exercise 1: Binary Numbers
	Slide 10: Exercise 2: Binary Number Range
	Slide 11: Unsigned Integers in C
	Slide 12: ASCII characters
	Slide 13: Hexidecimal Numbers
	Slide 14: Exercise 3: Hexidecimal Numbers
	Slide 15: Endianness
	Slide 16: Endianness
	Slide 17: Arithmetic Logic Unit (ALU)
	Slide 18: Bitwise vs Logical Operations in C
	Slide 19: Exercise 4: Bitwise vs Logical Operations
	Slide 20: Addition Example
	Slide 21: Addition Example with Overflow
	Slide 22: Error Cases (Unsigned Ints)
	Slide 23: Exercise 5: Binary Addition
	Slide 24: Multiplication Example
	Slide 25: Multiplication Example
	Slide 26: Error Cases
	Slide 27: Exercise 6: Binary Multiplication
	Slide 28: Multiplying with Shifts

