
CS 105 Spring 2026

Lecture 2: Representing Integers

Review: Abstraction

Review: Memory

• Memory is an array of bits

• A byte is a unit of eight bits

• An index into the array is an address,

location, or pointer

• Often expressed in hexadecimal

• We speak of the value in memory at

an address

• The value may be a single byte …

• … or a multi-byte quantity starting

at that address
1

0

1
0

0

0

1
1

0

1

1
0

1

1

0
0

0

1

1
1

0

1

0
0

1

1

0
0

1

1

1
0

0

1

2

3

01101100

01010011

11010001

00110111

bytes

Review: Bits Require Interpretation

10001100 00001100 10101100 00000000

might be interpreted as

• The integer 3,485,745

• A floating point number close to 4.884569 x 10-39

• The string “105”

• A portion of an image or video

• An address in memory

Representing Integers

• Arabic Numerals: 47

• Roman Numerals: XLVII

• Brahmi Numerals:

• Tally Marks: IIII IIII IIII IIII IIII IIII IIII IIII IIII II

Base-10 Integers

1000 (103) 100 (102) 10 (101) 1 (100)

0 0 0 5

0 0 4 7

1 8 8 7

Base-2 Integers (aka Binary Numbers)

128 (27) 64 (26) 32 (25) 16 (24) 8 (23) 4 (22) 2 (21) 1 (20)

0 0 0 0 0 1 0 1

0 0 1 0 1 1 1 1

1 1 1 1 1 1 1 1

Binary Numbers

• Decimal (Base-10):

• Binary (Base-2):

1011

= 1 ⋅ 103 + 0 ⋅ 102 + 1 ⋅ 101 + 1 ⋅ 100

= 1011

1011

= 1 ⋅ 23 + 0 ⋅ 22 + 1 ⋅ 21 + 1 ⋅ 20

= 11

Exercise 1: Binary Numbers

• Consider the following four-bit binary values. What is the

(base-10) integer interpretation of these values?

1. 0001

2. 1010

3. 0111

4. 1111

1

10

7

15

Exercise 2: Binary Number Range

• What are the max number and min number that can be

represented by a w-bit binary number?

1. w = 3

2. w = 4

3. w = 8

Unsigned Integers in C

C Data Type Size (bytes)

unsigned char 1

unsigned short 2

unsigned int 4

unsigned long 8

ASCII characters
Char Dec Binary

! 33 00100001

" 34 00100010

35 00100011

$ 36 00100100

% 37 00100101

& 38 00100110

' 39 00100111

(40 00101000

) 41 00101001

* 42 00101010

+ 43 00101011

, 44 00101100

- 45 00101101

. 46 00101110

/ 47 00101111

0 48 00110000

Char Dec Binary

1 49 00110001

2 50 00110010

3 51 00110011

4 52 00110100

5 53 00110101

6 54 00110110

7 55 00110111

8 56 00111000

9 57 00111001

: 58 00111010

; 59 00111011

< 60 00111100

= 61 00111101

> 62 00111110

? 63 00111111

@ 64 01000000

Char Dec Binary

A 65 01000001

B 66 01000010

C 67 01000011

D 68 01000100

E 69 01000101

F 70 01000110

G 71 01000111

H 72 01001000

I 73 01001001

J 74 01001010

K 75 01001011

L 76 01001100

M 77 01001101

N 78 01001110

O 79 01001111

P 80 01010000

Char Dec Binary

Q 81 01010001

R 82 01010010

S 83 01010011

T 84 01010100

U 85 01010101

V 86 01010110

W 87 01010111

X 88 01011000

Y 89 01011001

Z 90 01011010

[91 01011011

\ 92 01011100

] 93 01011101

^ 94 01011110

_ 95 01011111

` 96 01100000

Char Dec Binary

a 97 01100001

b 98 01100010

c 99 01100011

d 100 01100100

e 101 01100101

f 102 01100110

g 103 01100111

h 104 01101000

i 105 01101001

j 106 01101010

k 107 01101011

l 108 01101100

m 109 01101101

n 110 01101110

o 111 01101111

p 112 01110000

Hexidecimal Numbers

00101100 00110101 00110000 11100001 Dec Hex

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

a

b

c

d

e

f

2 c 3 5 3 0 e 1

0x2c3530e1

Exercise 3: Hexidecimal Numbers

• Consider the following hexidecimal values. What is the

representation of each value in binary?

1. 0x0a

2. 0x11

3. 0x2f

00001010 (10)

00010001 (17)

00101111 (47)

Endianness

47 vs 74

Endianness

• Big Endian: low-order bits go on the right (47)

• I tend to think in big endian numbers, so examples in class will

generally use this representation

• Networks generally use big endian (aka network byte order)

• Little Endian: low-order bits go on the left (74)

• Most modern machines use this representation

• I will try to always be clear about whether I'm using a big

endian or little endian representation

• When in doubt, ask!

Arithmetic Logic Unit (ALU)

• circuit that performs bitwise operations and arithmetic on

integer binary types

Bitwise vs Logical Operations in C
• Bitwise Operators &, |, ~, ^

• View arguments as bit vectors

• operations applied bit-wise in parallel

• Logical Operators &&, ||, !

• View 0 as “False”

• View anything nonzero as “True”

• Always return 0 or 1

• Early termination

• Shift operators <<, >>

• Left shift fills with zeros

• For unsigned integers, right shift is logical (fills with zeros)

Exercise 4: Bitwise vs Logical Operations
Assume unsigned char data type (one byte). What do each

of the following expressions evaluate to (interpreted as

unsigned integers and expressed base-10)?

1. ~150

2. !150

3. 150 & 51

4. 150 | 51

5. 150 && 51

6. 150 || 51

7. 150 << 2

8. 150 >> 2

= ~(10010110) = 01101001 = 105

= 10010110 & 00110011 = 00010010 = 18

= 10010110 << 2 = 01011000 = 88
= 10010110 >> 2 = 00100101 = 37

= !(10010110) = 00000000 = 0

= 10010110 | 00110011 = 10110111 = 183

= 10010110 && 00110011 = 00000001 = 1
= 10010110 || 00110011 = 00000001 = 1

Addition Example

• Compute 5 + 6 assuming all ints are stored as eight-bit (1

byte) unsigned values

Like you learned in grade school, only binary!

0 0 0 0 0 1 0 1
+ 0 0 0 0 0 1 1 0

1 1 0 1

1

… and with a finite number of digits

0 0 0 0 = 11 (Base-10)

Addition Example with Overflow

• Compute 200 + 100 assuming all ints are stored as eight-

bit (1 byte) unsigned values

Like you learned in grade school, only binary!

1 1 0 0 1 0 0 0
+ 0 1 1 0 0 1 0 0

0 0 1 1

… and with a finite number of digits

0 1 0 0

1 1

= 44 (Base-10)

Error Cases (Unsigned Ints)

• Assume 𝑤-bit unsigned values

• 𝑥 + 𝑦 = ቊ
𝑥 + 𝑦 (normal)

𝑥 + 𝑦 − 2𝑤 (overflow)

• overflow has occurred iff 𝑥 + 𝑦 < 𝑥

0 2𝑤 − 1 2 ⋅ (2𝑤 − 1)

[]
representable values

[]
Possible values of 𝑥 + 𝑦

modular addition

Exercise 5: Binary Addition

• Given the following 5-bit unsigned values, compute their

sum and indicate whether or not an overflow occurred

x y x+y overflow?

00010 00101

01100 00100

10100 10001

00111

10000

00101

no

no

yes

x+y overflow?

Multiplication Example

• Compute 5 x 6 assuming all ints are stored as eight-bit (1

byte) unsigned values

Like you learned in grade school, only binary!

0 0 0 0 0 1 0 1
x 0 0 0 0 0 1 1 0

… and with a finite number of digits

= 30 (Base-10)

0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0

+ _ 0 0 0 0 0 1 0 1 0 0
0 0 0 1 1 1 1 0

Multiplication Example

• Compute 200 x 3 assuming all ints are stored as eight-bit

(1 byte) unsigned values

Like you learned in grade school, only binary!

1 1 0 0 1 0 0 0
x 0 0 0 0 0 0 1 1

… and with a finite number of digits

= 88 (Base-10)

1 1 0 0 1 0 0 0
+ _ 1 1 0 0 1 0 0 0 0

0 1 0 1 1 0 0 0 1 0

Error Cases

• Assume 𝑤-bit unsigned values

• 𝑥 ∗ 𝑦 = 𝑥 ⋅ 𝑦 mod 2𝑤

0 2𝑤 − 1 (2𝑤−1) ⋅ (2𝑤 − 1)

[)
representable values

[)
Possible values of 𝑥 ∗ 𝑦

Exercise 6: Binary Multiplication

• Given the following 3-bit unsigned values, compute their

product and indicate whether or not an overflow occurred

x y x*y overflow?

100 101

010 011

111 010

100

110

110

yes

no

yes

x*y overflow?

Multiplying with Shifts

• Multiplication is slow

• Bit shifting is kind of like multiplication, and is often faster

• x * 8 = x << 3

• x * 10 = x << 3 + x << 1

• Most compilers will automatically replace multiplications

with shifts where possible

	Slide 1: Lecture 2: Representing Integers
	Slide 2: Review: Abstraction
	Slide 3: Review: Memory
	Slide 4: Review: Bits Require Interpretation
	Slide 5: Representing Integers
	Slide 6: Base-10 Integers
	Slide 7: Base-2 Integers (aka Binary Numbers)
	Slide 8: Binary Numbers
	Slide 9: Exercise 1: Binary Numbers
	Slide 10: Exercise 2: Binary Number Range
	Slide 11: Unsigned Integers in C
	Slide 12: ASCII characters
	Slide 13: Hexidecimal Numbers
	Slide 14: Exercise 3: Hexidecimal Numbers
	Slide 15: Endianness
	Slide 16: Endianness
	Slide 17: Arithmetic Logic Unit (ALU)
	Slide 18: Bitwise vs Logical Operations in C
	Slide 19: Exercise 4: Bitwise vs Logical Operations
	Slide 20: Addition Example
	Slide 21: Addition Example with Overflow
	Slide 22: Error Cases (Unsigned Ints)
	Slide 23: Exercise 5: Binary Addition
	Slide 24: Multiplication Example
	Slide 25: Multiplication Example
	Slide 26: Error Cases
	Slide 27: Exercise 6: Binary Multiplication
	Slide 28: Multiplying with Shifts

