
CS 105 Spring 2026

Lecture 0: Introduction to Computer Systems

https://cs.pomona.edu/classes/cs105/

https://cs.pomona.edu/classes/cs105/

Abstraction

• Example 1: Is x2 ≥ 0?

• Floats: Yes!

• Ints: Maybe…

• Example 2: Is (x + y) + z = x + (y + z)?

• Ints: Yes!

• Floats: Maybe…

Correctness

Performance

void copyji(int src[2048][2048],

 int dst[2048][2048]){

 int i,j;

 for (j = 0; j < 2048; j++){

 for (i = 0; i < 2048; i++){

 dst[i][j] = src[i][j];

 }

 }

}

void copyij(int src[2048][2048],

 int dst[2048][2048]){

 int i,j;

 for (i = 0; i < 2048; i++){

 for (j = 0; j < 2048; j++){

 dst[i][j] = src[i][j];

 }

 }

}

81.8ms4.3ms

Security

int buggy_authenticate(){

 char password[4]; // allocate space to store a string

 gets(password); // initialize string from user input

 return 0; // always returns False

}

void example3(){

 if(buggy_authenticate()){ // equivalent to if False

 printf("The answer is 42\n"); // should never happen

 } else {

 printf("Unauthenticated User (correct behavior)\n");

 }

}

C

• compiled, imperative language that provides low-level

access to memory

• low overhead, high performance

• developed at Bell labs in the

1970s

• C (and related languages) still

 commonly used today

C/C++

Java

Rust

R

Ada

Kotlin

Perl

Variables

• Declaration

• Assignment

• Declaration and assignment

int myVariable;

type name semi-colon

myVariable = 47;

name semi-colonvalue

int myVariable = 47;

Operations

• Arithmetic Operations: +, -, *, /, %

• Boolean Operators: ==, !=, >, >=, <, <=

• Logical Operations: &&, ||, !

• (also bitwise operations… more on that next week)

int x = 47;

int y = !x;

y = x && y;

int x = 47;

int y = x + 13;

y = (x * y) % 5;

int x = (13 == 47);

Control Flow

Conditionals While Loops

int x = 13;

int y;

if (x == 47){

 y = 1;

} else {

 y = 0;

}

int x = 47;

while (x > 0){

 x = x – 1;

}

For Loops

int x = 0;

for (int i=0; i < 47; i++){

 x = x + i;

}

Do-While Loops

int x = 47;

do {

 x = x - 1;

} while (x > 0);

Functions

Declaring a Function Calling a Function

int myFunction(int x, int y){

 int z = x – 2*y;

 return z * x;

}

int a;

a = myFunction(47, 13);

Exercise 1

• Define a function sum_interval that takes two integers

and returns an integer. If the second integer argument is

greater than (or equal to) the first, it returns the sum of the

integer values between those two numbers (inclusive).

Otherwise it returns -1.

Main Functions

• By convention, main functions in C take two arguments:

1. int argc

2. char** argv

• By convention, main functions in C return an int

• 0 if program exited successfully

int main(int argc, char** argv){

 // do stuff

 return 0;

}

Printing

printf("Hello world!\n");

printf("%d is a number\n", 13);

printf("%d is a number greater than %f\n”, 47, 3.14);

Compilation

• gcc -o hello hello.c

Pre-

processor
(cpp)

hello.i Compiler
(cc1)

hello.s Assembler
(as)

hello.o Linker
(ld)

hellohello.c

Source

program

(text)

Modified

source

program

(text)

Assembly

program

(text)

Relocatable

object

programs

(binary)

Executable

object

program

(binary)

printf.o

#include<stdio.h>

int main(int argc,

 char ** argv){

 printf("Hello

 world!\n");

 return 0;

}

…

int printf(const char *

 restrict,

 ...)

__attribute__((__format_

_ (__printf__, 1, 2)));

…

int main(int argc,

 char ** argv){

 printf("Hello

 world!\n");

 return 0;

}

pushq %rbp

movq %rsp, %rbp

subq $32, %rsp

leaq L_.str(%rip), %rax

movl $0, -4(%rbp)

movl %edi, -8(%rbp)

movq %rsi, -16(%rbp)

movq %rax, %rdi

movb $0, %al

callq _printf

xorl %ecx, %ecx

movl %eax, -20(%rbp)

movl %ecx, %eax

addq $32, %rsp

popq %rbp

retq

55

48 89 e5

48 83 ec 20

48 8d 05 25 00 00 00

c7 45 fc 00 00 00 00

89 7d f8

48 89 75 f0

48 89 c7

b0 00

e8 00 00 00 00

31 c9

89 45 ec

89 c8

48 83 c4 20

5d

c3

compiler output name filename

Running a Program

• ./hello

Bits

• a bit is a binary digit that can have two possible values

• can be physically represented with a two state device

Storing bits

• Static random access memory (SRAM):
stores each bit of data in a flip-flop, a
circuit with two stable states

• Dynamic Memory (DRAM): stores each
bit of data in a capacitor, which stores
energy in an electric field (or not)

• Magnetic Disk: regions of the platter are
magnetized with either N-S polarity or
S-N polarity

• Optical Disk: stores bits as tiny
indentations (pits) or not (lands) that
reflect light differently

• Flash Disk: electrons are stored in one of
two gates separated by oxide layers

Bytes and Memory

• Memory is an array of bits

• A byte is a unit of eight bits

• An index into the array of memory is

an address, location, or pointer

• Often expressed in hexadecimal

• We speak of the value in memory at

an address

• The value may be a single byte …

• … or a multi-byte quantity starting

at that address
1

0

1
0

0

0

1
1

0

1

1
0

1

1

0
0

0

1

1
1

0

1

0
0

1

1

0
0

1

1

1
0

0

1

2

3

01101100

01010011

11010001

00110111

bytes

Example C Types

C Data Type x86-64

int 4

double 8

char 1

Pointers

• Pointers are addresses in
memory (i.e., indexes into the
array of bytes)

• Most pointers declare how to
interpret the value at (or
starting at) that address

• Example:

• Dereferencing pointers:

Pointer Types x86-64

void* 8

int* 8

char* 8

⋮ 8

int myVariable = 47;

int* ptr = &myVariable;

int var2 = *ptr
& and * are inverses of one another

& is an "address of" operator

* is a "value at" operator

Exercise 2

What does x evaluate to in each of the following?

1.

2.

3.

4.

20

24

28

32

32

47

42

13

int* ptr = 32;

x = *ptr;

y

int y = 42; // assume allocated at address 28

x = &y;

int* ptr = 20;

x = **ptr; // same as *(*ptr)

int* x = 24;

*x = 47;

0

Casting between Pointer Types

• You can cast values between different types

• This includes between different pointer types!

• Doesn't change value of address

• Does change what you get when you dereference!

• Example:

int x = 47; // assume allocated at address 24

char* ptr2 = (char*) ptr;

32

47

42

13

20

24

28

32

x

int y = *ptr

char c = *ptr2;

int* ptr = &x;

Pointer Arithmetic

• Location of ptr+k depends on the type of ptr

• adding 1 to a pointer p adds 1*sizeof(*p) to the

address

int* ptr = &myVariable;

char* ptr2 = (char*) ptr;

ptr += 1;

ptr2 += 1;

Exercise 3

What does x evaluate to in each of the following?

1.

2.

3.

4.

20

24

28

32

32

13

47

20

int* ptr = 20;

int* x = ptr+1;

int* ptr = 20;

int x = *(ptr+2)

char* ptr = 20;

char* x = ptr+1;

char* ptr = 20;

int x = *((int*)(ptr + 4));

Arrays

• Contiguous block of memory

• Random access by index

• Indices start at zero

• Declaring an array:

• Accessing an array:

• Arrays are pointers!

• The array variable stores the address of the first element in the array

int array1[5]; // array of 5 ints named array1

char array2[47]; // array of 47 chars named array2

int array3[7][4]; // two dimensional array named array3

int x = array1[2]; // array[k] is the same as *(array+k)

Strings

• Strings are just arrays of characters

• aka strings are just pointers

• declared as type char*

• End of string is denoted by null byte \0

• Heterogeneous records, like objects

• Typical linked list declaration:

• Usage:

• Usage with pointers:

struct node {

 int value;

 struct node* next;

};

Structs

typedef struct node {

 int value;

 struct node* next;

} node_t;

node_t n;

n.value = 42;

n.next = NULL;

node_t* p;

p->value = 42;

p->next = NULL;

p->next is an

abbreviation for
(*p).next

LOGISTICS

The Course in a Nutshell

• Two Professors (Prof. Birrell + Prof. Thomas) + 4 TAs

• Textbooks (not required)
• Bryant and O’Halloran, Computer Systems: A Programmer’s Perspective,

third edition, Pearson, 2016

• Arpaci-Dusseau and Arpaci-Dusseau, Operating Systems: Three Easy
Pieces, online, 2018

• Classes
• Monday and Wednesday, 2:45-4pm in Edmunds 101

• Labs
• Wednesdays 7-8:15pm in Edmunds 229 ←Starts today

• Thursdays 9:35-10:50am in Edmunds 105 ←Starts tomorrow

• Office Hours TBD

• Mentor Sessions TBD

Grading

• Assignments (10)
• Introduced during labs, Due Tuesdays at 11:59pm

• Tremendous fun, work in pairs

• 10 late days

• Check-ins (5)
• 2-3 question quizzes (13 topics total)

• February 18/19, March 11/12, April 8/9, April 23/24, May 4

• Can improve grade on any topics(s) with "Extra Chance Check-in" (may take
after any later check-in or during final exam time)

• Final Exam Time: May 14 @ 2-5pm (most people), May 7 @ 2-5pm (grads)

• Grades
• Must successfully complete all the assignments

• Beyond that, 50% assignments, 45% check-ins, 5% participation

Course website

https://cs.pomona.edu/classes/cs105

• All information is on the course website

• All course materials get posted on the course website

• Links from the course page:

• Gradescope, for submitting assignments and seeing grades

• Additional resources

https://cs.pomona.edu/classes/cs105

	Slide 1: Lecture 0: Introduction to Computer Systems
	Slide 2: Abstraction
	Slide 3: Correctness
	Slide 4: Performance
	Slide 5: Security
	Slide 6: C
	Slide 7: Variables
	Slide 8: Operations
	Slide 9: Control Flow
	Slide 10: Functions
	Slide 11: Exercise 1
	Slide 12: Main Functions
	Slide 13: Printing
	Slide 14: Compilation
	Slide 15: Running a Program
	Slide 16: Bits
	Slide 17: Storing bits
	Slide 18: Bytes and Memory
	Slide 19: Example C Types
	Slide 20: Pointers
	Slide 21: Exercise 2
	Slide 22: Casting between Pointer Types
	Slide 23: Pointer Arithmetic
	Slide 24: Exercise 3
	Slide 25: Arrays
	Slide 26: Strings
	Slide 27: Structs
	Slide 28: Logistics
	Slide 29: The Course in a Nutshell
	Slide 30: Grading
	Slide 31: Course website

