Lecture O: Introduction to Computer Systems

CS 105 Spring 2026

1340
L

https://cs.pomona.edu/classes/cs105/ E

https://cs.pomona.edu/classes/cs105/

10N

Abstract

Correctness

- Example 1: Is x2207?

- Example 2:Is (x+y)+z = x+ (y + 2)?

Performance

void copyij(int src[2048][2048], void copyji(int src[2048][2048],
int dst[2048][2048]) { int dst[2048] [2048]) {
int 1,3; int i,3;
for (1 = 0; i < 2048; i++) { ><:for (3 = 0;, jJ < 2048; j++){
for (J = 0; j < 2048; j++) { for (i = 0; i < 2048; i++){
dst[i][j] = src[i][]]; dst[i][j] = src[i]l[]];
} }
} }
} }

i
Security

int buggy_authenticate () {
char password[4]; // allocate space to store a string
gets (password) ; // initialize string from user input

return O; // always returns False

}

void example3 () {
if (buggy authenticate()){ // equivalent to if False
printf ("The answer is 42\n"); // should never happen
} else {
printf ("Unauthenticated User (correct behavior)\n");

}

IR
C

- compiled, imperative language that provides low-level
access to memory

- low overhead, high performance

Top Computer Languages (Oct 2025)

Python

- developed at Bell labs in the Java

JavaScript

1970s e

R

PHP BB
Rust He==

Go mm

Kotlin @~
MATLAB
Ada

Visual Basic

Per] W=

- C (and related languages) still
commonly used today

Language
jr

[=]

10 20 30 40

Share (%)
@ryr. @ TIOBE

Variables

- Declaration

int myVariable ‘-'r’

| I
type name semi-colon

- Assignment

myVariable = é'z (r’
I
name value semi-colon

- Declaration and assignment

int myVariable = 47;

Operations

- Arithmetic Operations: +, -, *, /, %
int x = 47;
int y = x + 13;

y=(x *y) %5;
- Boolean Operators: ==, 1=, >, >=, <, <=

int x = (13 == 47) ;

- Logical Operations: &&, ||, !

int x = 47;
int y = 'x;
Yy =X && y;

- (also bitwise operations... more on that next week)

Control Flow

Conditionals

int x = 13;
int y;
if (x == 47){
y = 1;
} else {
y =0;
}

While Loops

Do-While Loops

int x = 47;

while (x > 0) {
x=x-1;

}

int x = 47;
do {
Xx=x - 1;
} while (x > 0);

For Loops

int x = 0;

for (int i=0; i < 47;

X =x + i;

}

i++) {

Functions

Declaring a Function

Calling a Function

int myFunction (int x, int y) {

int z = x - 2*y;
return z * x;

int a;

a = myFunction (47, 13);

Exercise 1

- Define a function sum_interval that takes two integers
and returns an integer. If the second integer argument is
greater than (or equal to) the first, it returns the sum of the
integer values between those two numbers (inclusive).
Otherwise it returns -1.

Main Functions

- By convention, main functions in C take two arguments:
1. 1int argc
2. char** argv

- By convention, main functions in C return an int
- 0 if program exited successfully

int main(int argc, char** argv) {
// do stuff

return O;

}

i
Printing

printf ("Hello world!\n");
printf("%d is a number\n", 13);

printf("%d is a number greater than %f\n”, 47, 3.14);

Compilation

compilelr output name filen?me

| N || |
- gcc -0 hello hello.c

printf.o
Pre- , . ‘—’ _
hello.c = 0CEsSSOr hello.i | Compiler| hello.s | Assemblef hello.o | Linker hello
> ?Cpp) (ccl) (as) " (14) >
Source Modified Assembly Relocatable Executable
program source program object object
(text) program (text) programs program
(text) (binary) (binary)
#include<stdio.h> " pushqg $rbp 55
int printf(const char * movq $rsp, %rbp 48 89 e5
int main(int argc, restrict, subg $32, %rsp 48 83 ec 20
char ** argv) { c.l) leaq L _.str(%rip), %rax || 48 8d 05 25 00 00 00
__attribute ((__format_ ||movl $0, -4(%rbp) c7 45 f£fc 00 00 00 00
printf ("Hello _ (_printf__, 1, 2))); movl %edi, -8(%rbp) 89 74 f£8
world!\n") ; " movqg %rsi, -16(%rbp) 48 89 75 fO0
return 0; int main(int argc, movq $%$rax, %rdi 48 89 c7
} char ** argv) { movb $0, %al b0 00
callg _printf e8 00 00 00 00
printf ("Hello xorl %ecx, %ecx 31 c9
world!\n") ; movl %eax, -20(%rbp) 89 45 ec
return 0; movl $ecx, %eax 89 c8
} addg $32, %rsp 48 83 c4 20
popad %rbp 5d
retq c3

Running a Program

- ./nello

Bits
- a bit is a binary digit that can have two possible values

- can be physically represented with a two state device

Storing bits

- Static random access memory (SRAM):
stores each bit of data in a flip-flop, a
circuit with two stable states

- Dynamic Memory (DRAM): stores each
bit of data in a capacitor, which stores
energy in an electric field (or not)

- Magnetic Disk: regions of the platter are
magnetized with either N-S polarity or
S-N polarity

- Optical Disk: stores bits as tiny
indentations (pits) or not (lands) that
reflect light differently

- Flash Disk: electrons are stored in one of
two gates separated by oxide layers

QOl

i
Bytes and Memory

_ bytes
- Memory is an array of<bie-

00110111

- A byte is a unit of eight bits

- An index into the array of memory is
an address, location, or pointer 11010001

- Often expressed in hexadecimal

- We speak of the value in memory at
an address

- The value may be a single byte ...]

- ... or a multi-byte quantity starting
at that address 01101100

01010011

IR
Example C Types

C Data Type x86-64

int 4

double 8

char 1

Pointers

- Pointers are addresses in

Pointer Types x86-64

memory (i.e., indexes into the .
array of bytes) Ve 3
int* 8
- Most pointers declare how to char* 8
interpret the value at (or : 8

starting at) that address

- Example:

int myVariable = 47;
int* ptr = &myVariable;

& is an "address of" operator
- Dereferencing pointers: * is a "value at" operator

int var2 = *ptr

& and * are inverses of one another

Exercise 2

What does x evaluate to in each of the following?

13
1. intx* ptr = 32;
X = *ptr;
32
2. int y = 42; // assume allocated at address 28
X = &y, 42 —Y
3. int* ptr = 20; 28
X = **ptr; // same as * (*ptr)
0
4. int* x = 24;
*x = 47; 24

32

20

i
Casting between Pointer Types

- You can cast values between different types
- This includes between different pointer types!

13

32

- Doesn't change value of address
- Does change what you get when you dereference!

42

28 =

- Example:

47 — X

int x = 47; // assume allocated at address 24
int* ptr = &x;

char* ptr2 = (char*) ptr;

int y = *ptr

char c = *ptr2; 32

20

Pointer Arithmetic

int* ptr = &myVariable;
char* ptr2 = (char¥*) ptr;

ptr += 1;
ptr2 += 1;

- Location of ptr+k depends on the type of ptr
- adding 1 to a pointer p adds l*sizeof (*p) tothe
address

Exercise 3

What does x evaluate to in each of the following?

20

1. int* ptr = 20;
int* x = ptr+l;
32
2. int* ptr = 20;
int x = *(ptr+2) 4
3. char* ptr = 20; 28
char* x = ptr+l;
13
4. char* ptr = 20;
int x = *((int*) (ptr + 4)); 24

32

20

Arrays

- Contiguous block of memory

- Random access by index
- Indices start at zero

- Declaring an array:

int arrayl[5]; // array of 5 ints named arrayl

char array2[47]; // array of 47 chars named array2

int array3[7][4]; // two dimensional array named array3

- Accessing an array:

int x = arrayl[2]; // array[k] isthe same as * (array+k)

- Arrays are pointers!
- The array variable stores the address of the first element in the array

i
Strings

- Strings are just arrays of characters
- aka strings are just pointers

- declared as type char~*

- End of string is denoted by null byte \ 0

Structs

- Heterogeneous records, like objects

- Typical linked list declaration: | typedef struct node ({
int wvalue;

struct node* next;

} node t;
. node_t n;
’ Usage' n.value = 42;
n.next = NULL;
- Usage with pointers: | node_t* p; p->next isan
p->value = 42; abbreviation for
p—->next = NULL; (*p) .next

LOGISTICS

The Course in a Nutshell

- Two Professors (Prof. Birrell + Prof. Thomas) + 4 TAs

- Textbooks (not required)

- Bryant and O’Halloran, Comé)uter Systems: A Programmer’s Perspective,
third edition, Pearson, 201

- Arpaci-Dusseau and Arpaci-Dusseau, Operating Systems: Three Easy
Pieces, online, 2018

- Classes
- Monday and Wednesday, 2:45-4pm in Edmunds 101

- Labs
- Wednesdays 7-8:15pm in Edmunds 229 «Starts today
- Thursdays 9:35-10:50am in Edmunds 105 «Starts tomorrow

« Office Hours TBD
- Mentor Sessions TBD

i
Grading

- Assignments (10)
- Introduced during labs, Due Tuesdays at 11:59pm
- Tremendous fun, work in pairs
- 10 late days

- Check-ins (9)
- 2-3 question quizzes (13 topics total)
- February 18/19, March 11/12, April 8/9, April 23/24, May 4

- Can improve grade on any topics(s) with "Extra Chance Check-in" (may take
after any later check-in or during final exam time)

- Final Exam Time: May 14 @ 2-5pm (most people), May 7 @ 2-5pm (grads)

- Grades
- Must successfully complete all the assignments
- Beyond that, 50% assignments, 45% check-ins, 5% participation

Course website

https://cs.pomona.edu/classes/cs105

- All information is on the course website
- All course materials get posted on the course website
- Links from the course page:

- Gradescope, for submitting assignments and seeing grades

- Additional resources

https://cs.pomona.edu/classes/cs105

	Slide 1: Lecture 0: Introduction to Computer Systems
	Slide 2: Abstraction
	Slide 3: Correctness
	Slide 4: Performance
	Slide 5: Security
	Slide 6: C
	Slide 7: Variables
	Slide 8: Operations
	Slide 9: Control Flow
	Slide 10: Functions
	Slide 11: Exercise 1
	Slide 12: Main Functions
	Slide 13: Printing
	Slide 14: Compilation
	Slide 15: Running a Program
	Slide 16: Bits
	Slide 17: Storing bits
	Slide 18: Bytes and Memory
	Slide 19: Example C Types
	Slide 20: Pointers
	Slide 21: Exercise 2
	Slide 22: Casting between Pointer Types
	Slide 23: Pointer Arithmetic
	Slide 24: Exercise 3
	Slide 25: Arrays
	Slide 26: Strings
	Slide 27: Structs
	Slide 28: Logistics
	Slide 29: The Course in a Nutshell
	Slide 30: Grading
	Slide 31: Course website

