Linux From Scratch (LFS)

Linux From Scratch

“Linux From Scratch (LFS) is a project that
provides you with step-by-step instructions
for building your own custom Linux system,

entirely from source code.”

https://linuxfromscratch.org/

Why LFS?

* For learning purposes only

e Started in 1999
* Latest update Sep 2022

e Teaches what “Linux” is
 Teaches about Kernel vs use

|t will not be
* Up-to-date
* Secure
* Fast

* Fully featured (e.g., no package
manager or desktop)

e Maintainable

It will be
* Fun
* Informative
e Tedious

Cross-Compiling

“A cross compiler is a capable of creating code for
a other than the one on which the compiler is running.”
For example

° Comp| e an Android App using WindOWS Do you want to compile on your phone?

* Compile a MacOS App using Linux
* Compile an Xbox Game using Unreal Engine on Windows or Linux
* Compile a Web Assembly App using Zig on MacOS

https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Executable
https://en.wikipedia.org/wiki/Platform_(computing)
https://en.wikipedia.org/wiki/Cross_compiler

Cross-Compiling

Cross-Compiling is surprisingly complicated

Linker
(1d)

hello

v

printf.o
Pre- . . '
hello.c hello.i Compiler hello.s Assembler | hello.o
»| processor > (ccl) * (as) >
(cpp)
Source Modified Assembly Relocatable
program source program object
(text) program (text) programs
(text) (binary)
Definitions

* Host: computer running the compiler

* Target: computer on which the application will run

Executable
object
program
(binary)

Cross-Compiling

Cross-Compiling is surprisingly complicated

Hardware Capabilities.

hello.c Pre- hello.i Compiler hello.s Assembler hello.o Linker hello
»| processor " (ccl) " (as) " (1d) >
(cpp)
Source Modified Assembly Relocatable Executable
program source program object object
(text) program (text) programs program
(text) (binary) (binary)
- ey Target specific library versions. Dynamic Linking.
Definitions

* Host: computer running the compiler
* Target: computer on which the application will run

Frustratingly, you normally need a compiler toolchain built for the target.

Circular Dependencies

* We are not inserting punch cards into a reader anymore

* The cross-compiling issues discussed in the previous slide are due to
circular dependencies

* We need a binary (driver) to get input from the keyboard, but where
does that binary come from?

* It must be compiled for the system. But how do we compile it if we
can’t even type!?

What's Needed to Cross-Compile?

To cross compile, we need
1. An existing kernel (OS)
2. AClibrary (fwrite, printf, socket, etc.)
3. Command line utitlies (bash, tar, scp, ssh, etc.)
4

. A compiler toolchain
Compiler (gcc)

Linker (Id)

Build system (make)
And some other extras

> w N e

Boot Process

Main (Mother) Board

© N O U W

Power-on

BIOS copied to RAM

Run BIOS firmware

Copy MBR from HD to RAM
Run MBR (bootloader)

Copy OS kernel to RAM

Run kernel (services/daemons)

Mount root partitions

Creating a “Bootable” Operating System

1. Needs to work with existing BIOS
2. Create a partitioned hard drive (e.g., USB or fake QEMU drive)

1. Drive needs to include a marked boot partition
2. Drive needs to include a partition

3. Setup a build machine with the utilities needed to compile for a
new target system (install stuff on your laptop or in QEMU)

4. Cross-compile all software needed and store in boot and root
partitions

5. Copy data into newly partitioned hard drive
6. Boot new target machine with hard drive installed

Linux From Scratch

* | don’t want to brick a spare laptop (or have you all do so either)
* We are going to create our own Linux using QEMU

Rough process
1. Create a fake build system with QEMU
2. Use the fake build system to build a bootable LFS image

3. Boot the LFS image using QEMU

Host, Builder, and Target

Linux From Scratch Methodology

Prepare the build environment (safely in QEMU build env for us)
Build cross-compiling toolchain (safely in QEMU build env for us)
Build LFS system

Configure the new LFS System

B W

Linux From Scratch Methodology

Prepare the build environment (safely in QEMU build env for us)
Build cross-compiling toolchain (safely in QEMU build env for us)
Build LFS system

Configure the new LFS System

N

14

Linux From Scratch Methodology

1. Prepare the build environment (safely in QEMU build env for us)
Install (as root) tools needed to create the cross-compiler

Format and partition the LFS boot medium (e.g., hard drive)

Mount the LFS partitions

Create directory structure in new partitions

Create a new user for safety and sandboxing

Setup the build user environment

2. Build cross-compiling toolchain (safely in QEMU build env for us)
3. Build LFS system
4. Configure the new LFS System

AR S

15

Linux From Scratch Methodology

1. Prepare the build environment (safely in QEMU build env for us)

2. Build cross-compiling toolchain (safely in QEMU build env for us)
1. Compile cross-toolchain (binutils, gcc, linux headers, glibc, libstdc++)

2. Cross compile helper tools (bash, make, tar, , 5CC)

* Handles circular dependencies
3. Create an environment isolated from the builder host (Fedora)

4. Finish compiling and installing cross-toolchain in isolated chroot

3. Build LFS system
4. Configure the new LFS System

There is a difference between development packages and the resulting LFS packages.

16

Linux From Scratch Methodology

4.

Prepare the build environment (safely in QEMU build env for us)
Build cross-compiling toolchain (safely in QEMU build env for us)

Build LFS system
1. Install cross-compiled packages into LFS file system

Configure the new LFS System

Linux From Scratch Methodology

Prepare the build environment (safely in QEMU build env for us)
Build cross-compiling toolchain (safely in QEMU build env for us)
Build LFS system

Configure the new LFS System
1. Make the system “bootable”

= W

18

LFS Process Diagram

Builder Environment

Create a disk image for the builder environment

> gemu-img create -f gcow2 builder.img 32G

Formatting 'builder.img', fmt=gcow2 cluster size=65536 extended l2=off
compression type=zlib s1ze=34359738368 lazy refcounts=off refcount bits=16

Install Fedora 37 in builder environment (settings are specific to my mac)
> gemu-system-x86 64
—cpu host, -pdpelgb
-m 8G
-smp 4
—accel hvf
—usb -device usb-tablet
-vga virtio
—display default, show-cursor=on
—audiodev coreaudio,id=coreaudio
—device ich9-intel-hda
—device hda-output,audiodev=coreaudio

A S A A A A e aa

—-drive file=builder.img,if=virtio \\
-boot d -cdrom Fedora-Server-dvd-x86 64-37-1.7.1s0

]
ROOT ACCOUNT

Done

The root account is used for administering the system.

The root user (also known as super user) has complete access to the entire system.
For this reason, logging into this system as the root user is best done only to
perform system maintenance or administration.

| Disable root account

Disabling the root account will lock the account and disable remote access with
root account. This will prevent unintended administrative access to the system.

© Enable root account

Enabling the root account will allow you to set a root password and optionally
enable remote access to root account on this system.

Root Password: m)y

— Weak

Confirm: eeccee oy

Allow root SSH login with password

| A The password fails the dictionary check - it is based on a dictionary word. You will have to press Done twice to confirm it.

21

FEDORA 37 INSTALLATION

Full name [ﬁ] |

User name ajc

Add administrative privileges to this user account (wheel group membership)

Require a password to use this account

Password LYY YY) o |
— Weak f

Confirm password ssccse oy ‘,
Advanced... |

k ,

A The password fails the dictionary check - it is based on a dictionary word. You will have to press Done twice to confirm it.

Boot Builder Environment

> gemu-system-x86 64
—-cpu host, -pdpelgb
-m 8G
-smp 4
—accel hvft
-usb -device usb-tablet

-vga virtio

-display default, show-cursor=on
—audiodev coreaudio, id=coreaudio
—-device ich9-intel-hda

-device hda-output,audiodev=coreaudio
-drive file=builder.img,if=virtio

o0 QEMU - (Press ctrl + alt + g to release Mouse)

Fedora Linux 37 (Server Edition)
Kernel 6.8.7-381.fc37.x86_64 on an x86_64 (ttyl)

lleb console: https://localhost:9898/ or https:/,/18.8.2.15:9898/
localhost login: ajc

Password :
[ajc@localhost ~1§ _

23

Host environment

> gemu-system-x86 64..

Update Build Environment P YL PP p—

sudo dnf update -y

Run the following inside Builder Environment

Update default software packages
sudo dnf update -y

Shutdown (so that i1t can be restarted)
sudo shutdown now -—-h

Restart builder and start ssh daemon
sudo systemctl enable —--now sshd
sudo shutdown now -h

24

LFS Drive

 \We need to create a “bootable” hard drive for our LFS OS

> gemu-img create -f gcow?2 lfs.img 16G

Formatting 'lfs.img', fmt=gcowZ cluster size=65536 extended 12=o0ff
compression type=zlib size=17179869184 lazy refcounts=off refcount bits=16

25

Start Builder and SSH In

> gemu-system-x86 64 -cpu host,-pdpelgb -m 8G -smp 4 -accel hvf -usb -
device usb-tablet -vga virtio -display default, show-cursor=on -audiodev
coreaudio, id=coreaudio -device ich9-intel-hda -device hda-

output, audiodev=coreaudio -drive file=builder.img,i1f=virtio -drive
file=lfs.img,1f=virtio —-display none -device virtio-net,netdev=vmnic -
netdev user, 1id=vmnic, hostfwd=tcp::1234-:22

> ssh -p 1234 ajc@localhost
ajc@localhost's password:

Web console: https://localhost:9090/ or https://10.0.2.15:9090/

Last login: Tue Dec 6 13:52:21 2022 from 10.0.2.2
[ajc@localhost ~]$ hostname

localhost.localdomain

[ajc@localhost ~]8S

26

Update Builder

Switch to root user and go to /root
su
cd /root

Install needed dependencies

dnf groupinstall "C Development Tools and Libraries"
dnf groupinstall "Development Tools" -y

dnf install texinfo -y

Run version-check.sh (Section 2.2)
bash version-check.sh

Y

27

Format LFS Drive

[root@localhost
NAME
sr0
zram0
vda

L_fedora-root
vdb
[root@localhost

Syncing disks.
[root@localhost
NAME

sr0

zram0

vda

F—vdal
F—vda2

L vda3
L_fedora-root

vdb

Fvdb1

—vdb2

L —vdb3

~1#

MAJ:

11:
251:
252:
252:
252:
252:
253:
252:

~1#

~1#

MAJ:

11:
251:
252:
252:
252:
252:
253:
252:
252:
252:
252:

1sblk

MIN RM
0 1
0 0
0 0
1 0
2 0
3 0
0 0
16 0
cfdisk
1sblk

MIN RM
0 1
0 0
0 0
1 0
2 0
3 0
0 0
16 0
17 0
18 0
19 0

SIZE RO

1024M
7.8G
32G
1M

1G
31G
15G
16G

O O OO O oo o

/dev/vdb

SIZE RO

1024M
7.8G
32G
1M

1G
31G
15G
16G
512M
256M
15.2G

O OO OO O OO oo o

TYPE MOUNTPOINTS
rom
disk
disk
part
part /boot
part

lvm /
disk

[SWAP]

TYPE MOUNTPOINTS
rom
disk
disk
part
part /boot
part

lvm /
disk

part

part

part

[SWAP]

ajc@localhost:~ (ssh)

Size: 32 GiB, 34359738368 bytes, 67108864 sectors
Label: gpt, identifier: F25AF98A-14E2-473B-B6BF-13D817CASFA2

1M BIOS boot
16 Linux filesystem
316 Linux LVM

>> /dev/vdal
/dev/vda2
/dev/vda3

2048
4896
2101248

4095
2101247
67106815

2048
2097152
65005568

Partition UUID: 818B4A1A-5669-42CC-A1E6-DBBF884B5F4D
Partition type: BIOS boot (21686148-6449-6E6F-744E-656564454649)

[Delete] [Resize]

Device is currently in use, repartitioning is probably a bad idea.

[Type 1 [Help] [Wreite] [Dump]

28

Set the File System Formats

File system types (Section 2.5)
mkfs -v -t ext4 /dev/vdb2

mkfs -v -t ext4 /dev/vdb3

mkswap /dev/vdbl

Setting $SLFS (add to .bashrc) (Section 2.6)
export LFS=/mnt/1fs

Mount partitions (Section 2.7)
mkdir -pv S$LFS

mount -v -t extd4 /dev/vdb3 SLFS
restorecon -R /mnt/1lfs

mkdir -pv $SLFS/boot
mount -v -t extd4d /dev/vdb2 SLFS/boot

/sbin/swapon -v /dev/vdbl

29

Partition and Mounted File System

Download Build and LFS Sources

Download Sources (Section 3.1)
mkdir -v SLFS/sources
chmod -v a+wt SLFS/sources

wget
wget

wget
wget

wget

https://www.linuxfromscratch.org/lfs/view/stable/wget-list-sysv
-—input-file=wget-list-sysv --continue --directory-prefix=SLFS/sources

https://github.com/libexpat/libexpat/releases/download/R 2 4 8/expat-2.4.8.tar.xz
https://www.zlib.net/fossils/zlib-1.2.12.tar.gz

https://www.linuxfromscratch.org/lfs/view/stable/md5sums

cp md5sums SLFS/sources
pushd S$SLFS/sources

popd

mdSsum —-c mdbsums

31

Create (Partial) Linux Directory Structure

Create directory layout (Section 4.2)
mkdir -pv SLFS/{etc,var} SLFS/usr/{bin,lib, sbin}

for i in bin 1lib sbin; do
ln -sv usr/$i SLFS/Si
done

case S (uname -m) in
x86 64) mkdir -pv SLFS/1lib64 ;;
esac

mkdir -pv SLFS/tools

32

Create LFS User for Isolation/Sandboxing

Create LFS user (Section 4.3)

groupadd 1fs

useradd -s /bin/bash -g 1lfs -m -k /dev/null 1lfs
passwd 1fs

chown -v 1fs SLFS/{usr{,/*},1lib,var,etc,bin, sbin, tools}
case S (uname -m) in
x86 64) chown -v 1lfs SLFS/1ib64 ;;

esacC

su — 1lfs

Make and Install binutils

cd SLFS/sources

tar xf binutils-2.39.tar.xz
cd binutils-2.39

mkdir -v build
cd build

../configure --prefix=SLFS/tools \
—--with-sysroot=SLFS \
—-—target=SLFS TGT \
-—disable-nls \
—-—enable-gprofng=no \
—--disable-werror

make
make install

34

Make and Install gcc

cd SLFS/sources
tar xf gcc-12.2.0.tar.xz

cd gcc-12.2.0

mkdir -v build
cd build

../configure \
—--target=SLFS TGT \
——prefix=$LFS/tools \
--with-glibc-version=2.36 \

make
make install

35

Make and Install...

e Linux APl Headers
e Glibc
e Libstd++

* These (along with binutils and gcc) are all that is needed for cross-
compiling

Cross Compile Helper Utilities

* They all follow this process
1. cd SLFS/sources
. tar xf UTILITY
.cd UTILITY
Call configure with needed settings
Call make
Callmake install with DESTDIR=SLFS

DU W N

e This includes: m4, ncurses, bash, coreutils, diffutils, file, findutils,
gawk, grep, gzip, make, patch, sed, tar, xz, ,

Making LFS Bootable

