
TCP
Transmission Control Protocol

OSI Network Model

2

Transport Layer Protocols

User Datagram Protocol (UDP)
• Unreliable, unordered delivery

• Connectionless

• Best-effort, segments might be
lost, delivered out-of-order,
duplicated

• Reliability (if required) is the
responsibility of the app

Transmission Control Protocol (TCP)
• Reliable, inorder delivery

• Connection setup

• Flow control

• Congestion control

3Note: neither guarantees latency or bandwidth

5. Stop accepting
messages

4. Stop sending
messages

3. Exchange
data

2. Start client 1. Start server

Client /
Server
Session

Sockets Interface

4

socket socket

bind

read

writeread

write

closeclose

listen

acceptconnect

TCP Only
Waits/blocks for connection

How would you accept
multiple connections?

Returns new file descriptor for read/write

Sockets Interface: socket

• Clients and servers use the socket function to create a socket descriptor:

• Example:

Protocol specific! Best practice is to use getaddrinfo to generate the
parameters automatically, so that code is protocol independent.

int socket(int domain, int type, int protocol)

int clientfd = socket(AF_INET, SOCK_DGRAM, 0);

Indicates that we are using
32-bit IPV4 addresses Indicates transport protocol

int clientfd = socket(AF_INET, SOCK_STREAM, 0);

5

getaddrinfo("www.example.com", "http", &hints, &res);
int s = socket(res->ai_family, res->ai_socktype, res->ai_protocol);

Sockets Interface: bind

• A server uses bind to ask the kernel to associate the server’s socket
address with a socket descriptor:

• The process can read bytes that arrive on the connection whose
endpoint is addr by reading from descriptor sockfd.
• Similarly, writes to sockfd are transferred along connection whose

endpoint is addr.
• Protocol specific! Best practice is to use getaddrinfo to generate

the parameters automatically, so that code is protocol independent.

int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen);

6

Sockets Interface: listen

• By default, kernel assumes that descriptor from socket function is an active
socket that will be on the client end of a connection.

• A server calls the listen function to tell the kernel that a descriptor will be
used by a server rather than a client:

• Converts sockfd from an active socket to a listening socket that can
accept connection requests from clients.

• backlog is a hint about the number of outstanding connection requests
that the kernel should queue up before starting to refuse requests.

int listen(int sockfd, int backlog);

7

Sockets Interface: accept

• Servers wait for connection requests from clients by calling accept:

• Waits for connection request to arrive on the connection bound to
listenfd, then fills in client’s socket address in addr and size of
the socket address in addrlen.

• Returns a connected file descriptor that can be used to communicate
with the client via Unix I/O routines (fwrite, etc.).

int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen);

8

Connected vs. Listening Descriptors

• Listening descriptor
• End point for client connection requests
• Created once and exists for lifetime of the server

• Connected descriptor
• End point of the connection between client and server
• A new descriptor is created each time the server accepts a connection request from a client
• Exists only as long as it takes to service client

• Why the distinction?
• Allows for concurrent servers that can communicate over many client connections

simultaneously
• E.g., Each time we receive a new request, we fork a child to handle the request

9

5. Stop accepting
messages

4. Stop sending
messages

3. Exchange
data

2. Start client 1. Start server

Client /
Server
Session

Sockets Interface

10

socket socket

bind

read

writeread

write

closeclose

listen

acceptconnect

TCP Only
Waits/blocks for connection
Returns new file descriptor for read/write

Sockets Interface: connect

• A client establishes a connection with a server by calling connect:

• Attempts to establish a connection with server at socket address addr
• If successful, then clientfd (returned value) is now ready for reading and writing.
• Resulting connection is characterized by socket pair

(x:y, addr.sin_addr:addr.sin_port)
• x is client address
• y is ephemeral port that uniquely identifies client process on client host

Best practice is to use getaddrinfo to supply the arguments addr and
addrlen.

int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen);

11

accept Illustrated
listenfd(3)

Client
1. Server blocks in accept, waiting for
connection request on listening descriptor
listenfdclientfd

Server

listenfd(3)

Client

clientfd

Server
2. Client makes connection request by calling
and blocking in connect

Connection
request

listenfd(3)

Client

clientfd

Server
3. Server returns connfd from accept.
Client returns from connect. Connection is
now established between clientfd and
connfdconnfd(4)

12

TCP Connections

• TCP is connection-oriented

• A connection is initiated with a
three-way handshake

• Server will typically create a new
socket to handle the new
connection

SYN
SYN, ACK

ACK

…

13

Reliable Transport

• Each SYN segment will include a randomly
chosen sequence number

• Sequence number of each segment is
incremented by data length

• Receiver sends ACK segments acknowledging
latest sequence number received

• Sender maintains copy of all sent but
unacknowledged segments; resends if ACK
does not arrive within timeout

• Timeout is dynamically adjusted to account
for round-trip delay

SYN
SYN, ACK

ACK
data (Seq = 47)

ACK 47
data (Seq = 48)

ACK 48

data (Seq = 49)

ACK 49
data (Seq = 49)

Send Timeout

14

Transport-Layer Segment Formats

UDP TCP

15

application message (payload)

Source Port # Dest. Port #

sequence number

acknowledgement number

receive windowHL FSRPAU

checksum U data pointer

options

application message (payload)

Source Port # Dest. Port #

Pipelined Protocols

• Pipelining allows sender to send multiple "in-flight", yet-to-be-
acknowledged packets
• Increases throughput
• Needs buffering at sender and receiver

• How big should the window be? what if a packet in the middle goes missing?

16

Example

• Window Size = 4

• Sender can have up to 4
unacknowledged messages

• When ACK for first message is
received, it can send another
message

ACK 47

data (Seq = 47)
data (Seq = 48)
data (Seq = 49)
data (Seq = 50)

ACK 48

ACK 49

ACK 50 data (Seq = 51)
data (Seq = 52)
data (Seq = 53)
data (Seq = 54)

17

TCP Fast Retransmit

• Receiver always ACKs the last id
it successfully received

• Sender detects loss without
waiting for timeout, resends
missing packet

ACK 47

data (Seq = 47)
data (Seq = 48)
data (Seq = 49)
data (Seq = 50)

ACK 47

ACK 47 data (Seq = 51)data (Seq = 48)
data (Seq = 48)

ACK 47

ACK 51
ACK 51

18

Practice with TCP Sequence Numbers

• Consider the sequence of
transmitted messages shown on
the right

• What will be the next ACK
number sent by the server?

• What will be the next Seq
number sent by the client?

19

ACK 13

data (Seq = 13)
data (Seq = 14)
data (Seq = 15)
data (Seq = 16)

Practice with TCP Sequence Numbers

• Consider the sequence of
transmitted messages shown on
the right

• What will be the next ACK
number sent by the server?

• What will be the next Seq
number sent by the client?

20

ACK 13

data (Seq = 13)
data (Seq = 14)
data (Seq = 15)
data (Seq = 16)

ACK 13

Practice with TCP Sequence Numbers

• Consider the sequence of
transmitted messages shown on
the right

• What will be the next ACK
number sent by the server?

• What will be the next Seq
number sent by the client?

21

ACK 13

data (Seq = 13)
data (Seq = 14)
data (Seq = 15)
data (Seq = 16)

data (Seq = 17)
ACK 13

TCP Congestion Control

TCP operates under a principle of

• additive increase
• window size++ every RTT if no

packets lost

• multiplicative decrease
• window size/2 if a packet is

dropped

22

TCP Congestion Control

TCP operates under a principle of

• additive increase
• window size++ every RTT if no

packets lost

• multiplicative decrease
• window size/2 if a packet is

dropped

23

TCP Fairness

• Goal: if k TCP sessions share some bottleneck link of bandwidth R,
each should have average throughput of R/k

24

R

RConnection 1 Throughput

Co
nn

ec
tio

n
2

Th
ro

ug
hp

ut Loss: decreases throughput
proportional to current
bandwidth

Congestion avoidance: increases
throughput linearly (evenly)

TCP Slow Start

• Problem: linear increase takes a
long time to build up a decent
window size, and most
transactions are small

• Solution: allow window size to
increase exponentially until first
loss

25

TCP Slow Start

• Problem: linear increase takes a
long time to build up a decent
window size, and most
transactions are small

• Solution: allow window size to
increase exponentially until first
loss

26

Practice with TCP Window Size

Assume someone changes the code of their TCP client by modifying the
congestion avoidance as follows:

• Instead of increasing the window size by 1 each time an ACK is
received,

• They double the window size each time an ACK is received (like in the
slow-start phase).

What would be the pros and cons of this modification?

27

TCP Connections

• TCP is connection-oriented

• A connection is initiated with a
three-way handshake

• Recall: server will typically create a
new socket to handle the new
connection

• FIN works (mostly) like SYN but to
teardown a connection

SYN
SYN, ACK

ACK

…
FIN

ACK

28

TCP Summary

• Reliable, in-order message delivery

• Connection-oriented, three-way handshake

• Transmission window for better throughput
• timeouts based on link parameters (e.g., RTT, variance)

• Congestion control
• Linear increase, exponential backoff

• Fast adaptation
• Exponential increase in the initial phase

29

Network Model

30

Web up to HTTP/2

HTTP

TCP+TLS

IP

Any

Any

HTTP/3

• HTTP/1.1: TCP (+ optional TLS or SSL) transmitted on IPv4 or IPv6
• HTTP/2: TCP + TLS transmitted on IPv4 or IPv6
• HTTP/3: QUIC (built on UDP) transmitted on IPv4 or IPv6

• HTTP/3 Availability
• Chrome since April 2020
• Edge since April 2020
• Firefox since April 2021
• Safari (not yet enabled by default)

31

TCP vs UDP

32

HTTP/3 Deep Dive | HTTP/3's value, features, and use cases | Ably Realtime

https://ably.com/topic/http3

TCP vs QUIC

33

TCP + TLS vs QUIC

34

HTTP/3 Deep Dive | HTTP/3's value, features, and use cases | Ably Realtime

https://ably.com/topic/http3

HTTP/3 Layers

35

HTTP/3 Deep Dive | HTTP/3's value, features, and use cases | Ably Realtime

https://ably.com/topic/http3

