Networks

Drawing: File Systems

* Take three minutes to draw “file systems”

e Some reminders
* Blocks
* inodes
* Direct and indirect pointers
* Fast file system (FFS)

e =

‘_/

L ﬁ/j)

All About Protocols

* How would you send a message from your computer to the server?

* What is involved in the process?
e What hardware?
 What software?

* How would you ensure privacy? Error handling?

The Big Picture

Routers

Endpoints

The Big Picture

Applicatiop <1essages - | Applichtion
Transporf Segments - Trans;ﬁort
¢ ! Routerl Router2
datagrams
Network Network Network |7 | Netwark
Data LinK |~ 2M€S-/nata Link - Data Link |~ Data L|nk
Physicall 1 bits__, | Physicall ~—| Physical {~—| Physial

uvu%;lévv

Signa)

The Big Picture

Firefox (e.g., HTTPS) Applicatio!n fHessages ~| Applichtion
Operating System Library (e.g., TCP) | Transport sSegments > Trans&mrt
: ’ Routerl m\
. datagrams
OS and Software Drivers (e.g., IP) Network Network ‘—L Network [~ 7| Netwaqrk
Hardware Interface (e.g., Wi-Fi) Data Lin . frames . Data Link [« Data Link |*—| Data Ljnk
Physical Transmission (e.g., Fiber) Physical\ . bits } Physicall ~——| Physical q<—> Physiﬁzal

Protocols and Encapsulation
Headers

Transport | src&dst ports +...
Network |src&destIPaddr+...

source - src &dest MAC addr+...

message | M || application |
segment Hy| M transport
datagram |Hy|H,| M || network

frame B HyIH- | M | link -
+ Pphysical
Hy[H. | M | | network HylH.| M |
Hy[A M] | link Hy [H T M
physical
destination router

M |¢ application
H:| M transport
Hy[H; [M]| network

Fulr M| ink
physical

Hardware and Software Interface

HTTP, FTP, DNS

(these” are usually in libraries)

Application app| |app

[os

P

Transport TCP, UDP /

Network IP, ICMP (ping) ‘

memory

|
bus

. Ethernet, WiFi y
Link ontroller
: : NIC
Ehreical wires, S|.gnal
encoding m

(Hard to draw firm lines here)

!

CPU

register file

—)

1r

=

Ml

ALU

/I_‘/
\,7

system bus

o\

/O
bridge

)

memory

|

bus

main
memory

Expansion slots

<

<

controller

USB

T

T

<

graphics
adapter

mouse keyboard

l

monitor

1/O bus

>
\/

disk
controller

network
adapter

A

A 4

{ network]

I

10

First Up = Physical

wires, signal

Physical encoding

Physical Layer

=
(O
(el
O
Q
)
D
=
T
°

e Coaxial

<

VL/W

e Fiber

e Radio

12

Next Up =2 Link

Link Ethernet, WiFi

Data Link Layer

* DSL

Ethernet

WiFi (802.11)

* LTE

Twisted Pair

Coaxial

Fiber

Radio

14

Data Link Layer

Cleont <+ Seqyec

A
* Each host has one or more network adapter

* Network interface controller (or card), aka NIC
* Handles physical layer and protocol

e Each network adapter has a media access control (MAC) address
* Unique to that network instance

* Messages are organized as packets

https://explained-from-first-principles.com/internet

Communication Protocol
A\\\(,Q B(‘)b

- : — Anomalies

* Protocol Deviation

* Data Corruption

&

* Lost Connection

How ar vou’.

% (5,000l -
(/H,OU oL/Z_ L‘/(M?

é/f | Tipe . =
4

* Network Latency

e Qut-of-Order Delivery

'[:([V\Q, 16

https://explained-from-first-principles.com/internet

Ethernet

destination address

* Developed 1976 at Xerox SOUTES BEMIESS

* Very successful, still in widespread use

* Example address: b8:e3:56:15:6a:72

e Carrier sense: listen before youspea

* Multiple access: multiple hosts on network

* Collision detection: detect and respond to
cases where two messages collide checksum

17

Example: Ethernet

e Carrier sense: broadcast if wire is available

* |n case of collision: stop, sleep, retry

. ined by collision number
e abort after 16 attempts

* Problems handled up the chain

18

Example: Ethernet

Advantages
* Completely decentralized

* Inexpensive
* No state in the network
* No arbiter
e Cheap physical links

Disadvantages
* Endpoints must be trusted

 Data is available for all to see

* Can place ethernet card in
promiscuous mode and listen to
all messages

__ /L
WIRESHARK

. Capturing from wilanO

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

A 4d @ BRBEB a <> >K)YH

P B\ IRESHARK

Time Source Destination Protocol Lengt Info

3893 74.009209782 192.168.0.5 198.35.26.96 TCP 86 [TCP Window Update] 49426 - 443 [ACK] Seq=17760 Ack=909667 Win=1464320 Len=0 TSval=..
3894 74.009619550 198.35.26.96 192.168.0.5 TCP 1414 443 - 49426 [ACK] Seq=957494 Ack=16688 Win=42496 Len=1348 TSval=3572045044 TSecr=26..
3895 74.009628076 192.168.0.5 198.35.26.96 TCP 86 [TCP Window Update] 49426 - 443 [ACK] Seq=17760 Ack=909667 Win=1467264 Len=0 TSval=..
3896 74.010017906 198.35.26.96 192.168.0.5 TLSv1.3 1414 Application Data, Application Data
3897 74.010021713 192.168.0.5 198.35.26.96 TCP 86 [TCP Window Update] 49426 - 443 [ACK] Seq=17760 Ack=909667 Win=1470080 Len=0 TSval=..
3898 74.012261319 198.35.26.96 192.168.0.5 TCP 1414 443 - 49426 [ACK] Seq=960190 Ack=16688 Win=42496 Len=1348 TSval=3572045045 TSecr=26..
3899 74.012265176 192.168.0.5 198.35.26.96 TCP 86 [TCP Window Update] 49426 - 443 [ACK] Seq=17760 Ack=909667 Win=1473024 Len=0 TSval=..
3900 74.012686034 198.35.26.96 192.168.0.5 TCP 2762 443 - 49426 [ACK] Seq=961538 Ack=16688 Win=42496 Len=2696 TSval=3572045046 TSecr=26..
3901 74.012689801 192.168.0.5 198.35.26.96 TCP 86 [TCP Window Update] 49426 - 443 [ACK] Seq=17760 Ack=909667 Win=1478400 Len=0 TSval=..
3902 74.013239191 198.35.26.96 192.168.0.5 TCP 1414 443 - 49426 [ACK] Seq=964234 Ack=16688 Win=42496 Len=1348 TSval=3572045047 TSecr=26..
3903 74.013242156 192.168.0.5 198.35.26.96 TCP 86 [TCP Window Update] 49426 - 443 [ACK] Seq=17760 Ack=909667 Win=1481344 Len=0 TSval=..
+ 3904 74.013513344 198.35.26.96 192.168.0.5 TLSv1.3 884 Application Data
‘ 3905 74.013516600 192.168.0.5 198.35.26.96 TCP 86 [TCP Window Update] 49426 - 443 [ACK] Seq=17760 Ack=909667 Win=1484032 Len=0 TSval=..
3906 74.013942759 198.35.26.96 192.168.0.5 TCP 1414 443 - 49426 [ACK] Seq=966400 Ack=16688 Win=42496 Len=1348 TSval=3572045065 TSecr=26..
3907 74.013945474 192.168.0.5 198.35.26.96 TCP 86 [TCP Window Update] 49426 - 443 [ACK] Seq=17760 Ack=909667 Win=1486976 Len=0 TSval=..
3908 74.014374868 198.35.26.96 192.168.0.5 TCP 1414 443 - 49426 [ACK] Seq=967748 Ack=16688 Win=42496 Len=1348 TSval=3572045065 TSecr=26..
3909 74.014377884 192.168.0.5 198.35.26.96 TCcP 86 [TCP Window Update] 49426 - 443 [ACK] Seq=17760 Ack=909667 Win=1489792 Len=0 TSval=..
3910 74.014842344 198.35.26.96 192.168.0.5 TCP 1414 443 - 49426 [ACK] Seq=969096 Ack=16688 Win=42496 Len=1348 TSval=3572045065 TSecr=26..
8 d (148 (70 L. 2 () Qf 8 _Of - 26 - indow ndate 404296 44 ALK co— B0 _Ack_QLQOREA in-_140 A an_[) al=

Frame 3904: 884 bytes on wire (7072 bits), 884 bytes captured (7072 bits) on interface wlan@, id ©
Ethernet II, Src: D-LinkIn_db:ee:43 (ec:ad:e@:db:ee:43), Dst: CloudNet_9f:41:11 (0c:96:e6:97:41:11)
Internet Protocol Version 4, Src: 198.35.26.96, Dst: 192.168.0.5

Transmission Control Protocol, Src Port: 443, Dst Port: 49426, Seq: 965582, Ack: 16688, Len: 818

[5 Reassembled TCP Segments (6802 bytes): #3896(592), #3898(1348), #3900(2696), #3902(1348), #3904(818)]
Transport Layer Security

Oc 96 e6 9f 41 11 ec ad e0 db ee 43 08 00 45 00O
03 66 04 31 40 00 32 06 a0 30 c6 23 l1la 60 cO a8
00 05 01 bb c1 12 51 12 97 3c de b5 9a 3a 80 18

Frame (884 bytes) Reassembled TCP (6802 bytes)

® E wlano: <live capture in progress> Packets: 9439 - Displayed: 9439 (100.0%) Profile: Default

Practice with Data Link Layer

* Which of the following are examples of data link layer protocols?
a. 4G LTE
b. Ethernet
c. Fiber
d. WiFi (802.11)

e. IP

Practice with Data Link Layer

* Which of the following are examples of data link layer protocols?
a. 4G LTE
b. Ethernet
c. Fiber
d. WiFi (802.11)

e. IP

Next Up =2 Network

Network IP, ICMP (ping)

23

Network Layer

e There are lots of lots of local area networks (LANs)
Each determines its own protocols, address format, packet format

 What if we wanted to connect them together?

e This is an internetwork

Physically connected by specialized computers called routers

Routers with multiple network adapters can translate

Standardize address and packet formats

host

host

host

host

host

host

% %

LAN 1

Aka wide-area network (WAN)

Aka internet

router

router

router

LAN 2

S

=
-@nterconnection of networks
*—No particular topology

* Vastly different router & link capacities

* Send packets from source to destination by hopping through networks
* Router forms bridge from one network to another
* Different packets may take different routes

25

Internet Protocol (IP)

* |nitiated by the DoD in 60s-70s

* Currently transitioning (very slowly)
from IPv4 to IPv6
TPy Y

 Example address: 128.84/[.12.43

* Interoperable

* Network dynamically routes packe
from source to destination

Vv

IHL TOS total length
identification fs offset
TTL protocol header checksum
source address
destination address

options

application message (payload)

26

Aside: IPv4 and IPv6

* The original Internet Protocol, with its 32-bit addresses, is known as
Internet Protocol Version 4 (IPv4)

* 1996: Internet Engineering Task Force (IETF) introduced Internet Protocol
Version 6 (IPv6) with 128-bit addresses

* Intended as the successor to IPv4

* As of November 2022, majority of Internet traffic still carried by IPv4

* 40% of users access Google services using IPv6.
e Up from about 30% in Nov 2020

* We will focus on IPv4 but we’ll see how to write networking code that is
protocol-independent.

Application

can scramble

the data for
privacy

LAN1
(1) data
internet packet
(2) data PH | FH1
LAN1 frame
(3) data PH | FH1
(4)

PH: Internet packet header
FH: LAN frame header

Transferring internet Data Via Encapsulation

Host A Host B LAN2
client server
A
(8) data
A 4
protocol protocol
software software
(7) data PH | FH2
\4
LAN1 LAN2
adapter adapter
Router '
(6) data PH | FH2
LAN1 LAN2
adapter adapter
LANZ2 frame
data PH | FH1 data PH | FH2 | (5)
protocol

software

Exercise 2: IP addresses

What is the current IP address assigned to your computer?

Try these:
curl https://cs.pomona.edu/classes/csl105/schedule.html

curl 1pinfo.io

> curl https://cs.pomona.edu/classes/cs105/schedule.html
<!DOCTYPE html>

<meta charset="utf-8">
<meta http-equ UA-Compatible" conten IE=edge">
<meta name="viewport" content="width=device-width, initial-scale

<title>CS105 - Fall 2022</title>

<link href='https://fonts.googleapis.com/css?family=Source+Sans+Pro:300,3001i,6600,7
00,700i' rel='stylesheet' type='text/css'>
<link href='https://fonts.googleapis.com/css?family=Inconsolata:400,760,700i' rel=

‘stylesheet' type='text/css'>

<link href="resources/css/bootstrap.min.css" rel="stylesheet">
<link rel="stylesheet" href="resources/css/main.css">
</head>

<body>
<header class="site-header
<div clas r navbar-inverse navbar-fixed-top">
container-fluid">
<div class="navbar-header">

<button type="button" class="navbar-toggle" data-t

oggle="collapse" data-target=".navbar-collapse">
Toggle navigation</s

oan>

29

curl ipinfo.1io0

i H v Rt it S B 000 L TR, el

"city": "Claremont",

"region”": "California",

COUNERY s S

o] B o | ot Fair] L % G v e 0 e

"org": "AS3659 Claremont University Consortium",
"postal”: "91711",

"timezone": "America/Los_Angeles",
"readme": "https://ipinfo.io/missingauth"

Routing

What if a packet doesn’t reach its destination?

That depends on the layer above the network.

/" Routerd\

¢ ’ Routerl

datagrams

Network Network Network |7 7| Netwark
Data Linl% - frames . Data Link] Data Link |*—| Data Ljnk
Physicall 1 bits__, |Physicall =—| Physical |-—| Physigal

31

Next Up = Transport

Transport TCP, UDP

Transport Layer

Transport segments
¢ ! Routerl

datagrams
Network Network

Router?2

Network

> Trans&»ort

Netwd

rk

Data Linl% - frames. Data LinkK

Data Link

\ . bits

Physical

P —

: Physical‘ =

Physical

—>

:

Data L

nk

Physw

pal

33

Transport Layer

* Clients and servers communicate by sending streams of bytes over a
connection.

* A transport layer endpoint is identified by an IP address and a port, a
16-bit integer that identifies a process

* Ephemeral port: Assigned automatically by client kernel when client makes a
connection request.

* Well-known port: Associated with some service provided by a server (e.g.,
port 80 is associated with Web servers)

34

(Unix) Socket Programming

What is an endpoint?

* A socket

e |P address + port

* To the OS kernel, a socket is an endpoint of communication

 Toan aEpIication, a socket is a file descriptor that lets the application read/write from/to the
network (Note: All Unix I/O devices, including networks, are modeled as files)

Hosts communicate with each other by reading from and writing to socket descriptors

P »
< »

clientfd serverfd

The main distinction between regular file I/O and socket I/O is how the application “opens” the
socket descriptors

Anatomy of a Connection

A connection is uniquely identified by the socket addresses of its
endpoints (socket pair)

(cliaddr:cliport, servaddr:servport)

Client socket address Server socket address
128.2.194.242:51213 :80
L/ \ Server
Connection socket pair (port 80)
(128.2.194.242:51213, :80)
Client host address Server host address

128.2.194.242

51213 is an ephemeral port 80 is a well-known port
allocated by the kernel associated with Web servers

Well-known Ports and Service Names

* Popular services have permanently assigned well-known ports and
corresponding well-known service names:
e echo server: 7/echo
* ssh servers: 22/ssh
e email server: 25/smtp
* Web servers: 80/http

* Mappings between well-known ports and service names is contained
in the file /etc/services on each Linux machine.

37

File: /etc/services

/etc/services:
$Id: services,v 1.49 2017/08/18 12:43:23 ovasik Exp $

Network services, Internet style
IANA services version: last updated 2016-07-08

Note that it is presently the policy of IANA to assign a single well-known

port number for both TCP and UDP; hence, most entries here have two entries
even if the protocol doesn't support UDP operations.

Updated from RFC 1700, " 'Assigned Numbers'' (October 1994). Not all ports

are included, only the more common ones.

The latest IANA port assignments can be gotten from
http://www.iana.org/assignments/port-numbers

The Well Known Ports are those from @ through 1023.

The Registered Ports are those from 1024 through 49151

The Dynamic and/or Private Ports are those from 49152 through 65535

Each line describes one service, and is of the form:

T HET TR

service-name port/protocol [aliases ...] [# comment]

tecpmux 1/tcp TCP port service multiplexer
tcpmux 1/udp TCP port service multiplexer
rje 5/tcp Remote Job Entry

rje 5/udp Remote Job Entry

echo 7/tcp

echo 7/udp

discard 9/tcp sink null

discard 9/udp sink null

systat 11/tcp users

systat 11/udp users

daytime 13/tcp

daytime 13/udp

qotd 17/tcp quote

qotd 17/udp quote

chargen 19/tcp ttytst source

chargen 19/udp ttytst source

ftp-data 20/tcp

ftp-data 20/udp

21 is registered to ftp, but also used by fsp

ftp 21/tcp

ftp 21/udp fsp fspd

ssh 22/tcp The Secure Shell (SSH) Protocol
ssh 22/udp The Secure Shell (SSH) Protocol
telnet 23/tcp

telnet 23/udp

24 - private mail system

mtp 24/tcp LMTP Mail Delivery

mtp 24 /udp LMTP Mail Delivery

smtp 25/tcp mail

smtp 25/udp mail

time 37/tcp timserver

time 37/udp timserver

rip 39/tcp resource resource location

rip 39/udp resource resource location

nameserver 42 /tcp name IEN 116

Sockets Interface

How would you accept
multiple connections?

TCP Only
Waits/blocks for connection

Returns new file descriptor for read/write

connect mm

Client /
Server
Session

39

https://beej.us/guide/bgnet/html/

while(l) { // main accept() loop
sin size = sizeof their addr;
new fd = accept(sockfd, (struct sockaddr *)&their addr, &sin size);

if (new fd == -1) {
perror ("accept");
continue;

}

inet ntop(their addr.ss family,
get in addr((struct sockaddr *)&their addr),
s, sizeof s);

printf("server: got connection from %s\n", s);

if (!fork()) { // this is the child process
close(sockfd); // child doesn't need the listener
if (send(new fd, "Hello, world!", 13, 0) == -1)
perror("send");
close(new fd);
exit(0);
}

close(new fd); // parent doesn't need this

40

https://beej.us/guide/bgnet/html/

Sockets Interface: socket

* Clients and servers use the socket function to create a socket descriptor:

int socket(int domain, int type, 1nt protocol)

* Example:

int clientfd = socket (AF INET, SOCK DGRAM, O0);

int clientfd = socket (AF INET, SOCK STREAM, O0);

/
Indicates that we are using |ndicates}5 ort protocol
32-bit IPV4 addresses PorEP

Protocol specific! Best practice is to use getaddrinfo to generate the
parameters automatically, so that code is protocol independent.

getaddrinfo ("www.example.com", "http", &hints, &res);
int s = socket(res->ai family, res->al socktype, res->ali protocol);

Socket Address Structures

* Internet-specific socket address:

* Must cast (struct sockaddr in *)to(struct sockaddr *)for

functions that take socket address arguments.

struct sockaddr in
uintlo t
uintlo t
struct in addr
unsigned char

b

{
sin family;
sin port;
sin addr;
sin zerol[8];

/*
/*
/*
/*

Protocol family (always AF INET) */
Port num in network byte order */
IP addr in network byte order */
Pad to sizeof (struct sockaddr) */

sin port

sin addr

AF INET

sa family_

sin family

~
Family Specific

42

Sockets Interface: bind

e A server uses bind to ask the kernel to associate the server’s socket
address with a socket descriptor:

int bind(int sockfd, const struct sockaddr *addr, socklen t addrlen);

* The process can read bytes that arrive on the connection whose
endpoint is addr by reading from descriptor sockfd.

 Similarly, writes to sockfd are transferred along connection whose
endpoint is addr.

* Protocol specific! Best practice is to use getaddrinfo to generate
the parameters automatically, so that code is protocol independent.

43

Transport Layer Segments

* Sending application:
e Specifies IP address and port
* Uses socket bound to source port

* Transport layer:
* Breaks application message into
smaller chunks

» Adds transport-layer header to each
message to form a segment

S P Dest. IP
* Network layer (IP): i =

* Adds network-layer header to each _

datagram

44

Should the transport layer
guarantee packet delivery?

No. It might not be necessary for all applications.

Transport Layer Protocols

User Datagram Protocol (UDP) Transmission Control Protocol (
* Unreliable, unordered delivery * Reliable, inorder delivery
* Connectionless * Connection setup
» Best-effort, segments might be * Flow control
lost, delivered out-of-order,
duplicated
 Reliability (if required) is the * Congestion control

responsibility of the app

Note: neither guarantees latency or bandwidth

UDP: tradeoffs

* Fast: * (Possibly) extra work for
* No connection setup applications
* No rate-limiting * Reordering

* Duplicate suppression

, * Handle missing packets
* Simple:

* No connection state
* Small header (8 bytes)

Transport Protocols by Application

Application Application-Level Protocol | Transport Protocol

Name Translation
Routing Protocol
Network Management
Remote File Server
Streaming multimedia
Internet telephony
Remote terminal access
File Transfer

Email

Web

DNS

RIP

SNMP

NFS
(proprietary)
(proprietary)
Telnet

(S)FTP

SMTP
HTTP(S)

Typically UDP
Typically UDP
Typically UDP
Typically UDP
UDP or TCP
UDP or TCP
TCP

TCP

TCP

TCP

48

Hardware and Software Interfaces

HTTP, FTP, DNS

Appl|cat|on (these” are usually in libraries)
Transport TCP, UDP
memory
Network IP, ICMP (ping) I
bus
Link Ethernet, WiFi
Phsical wires, signal nie
y encoding

(Hard to draw firm lines here)

49

The Big Picture

Socket

Applicatioln ANESSAYES > | Appliciation
Transporf Segments - Trans;bort
¢ ! Routerl Router2
datagrams
Network Network Network |7 | Netwark
Data LinK |~ 2M€S-/nata Link - Data Link |~ Data L|nk
Physicall 1 bits__, |Physicall =—| Physical |-—| Physigal

Socket

50

