
File Systems



System I/O as a Uniform Interface

Operating systems use a uniform system I/O interface for all I/O devices

Commands to read and write to a file descriptor are the same no matter what type of "file"

Types of files include
• File (input/output)
• Keyboard (input)
• Screen (output)
• Pipe (input/output)
• Network (input/output
• Etc.
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Our First I/O System: File Systems

Long-term information storage goals
• Should be able to store large amounts of information
• Information must survive processes, power failures, etc.
• Processes must be able to find information
• Needs to support concurrent accesses by multiple processes

Solution: the file system abstraction
• Interface that provides operations involving: Files and Directories
• Directories are just a special kind of file
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The File System Abstraction
Interface that provides operations on data stored long-term on disk

A file is a named sequence of stored bytes
• Name is defined on creation
• Processes use name to subsequently access that file

A file comprises two parts:
• Data: information a user or application puts in a file (an array of untyped bytes)
• Metadata: information added and managed by the OS (e.g., size, owner, security info, modification time)

Two types of files
• Normal files: data is an arbitrary sequence of bytes
• Directories: a special type of file that provides mappings from human-readable names to low-level names 

(i.e., File numbers)
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The File System Stack

POSIX API (open, read, write, close, …)

Generic Block Interface (block read/write)

Specific Block Interface (protocol-specific read/write)

Language Libraries (e.g., fopen, fread, fwrite, fclose,…)

Application
User Level

Kernel ModeFile System

Generic Block Layer

Device Driver

Today’s Focus

5



File System Challenges

• Performance: despite limitations of disks

• Flexibility: need to support diverse file types and workloads

• Persistence: store data long term

• Reliability: resilient to OS crashes and hardware failures
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Common File System Properties

• Most files are small
• Need strong support for small files (optimize the common case)
• Block size can't be too big, or we’ll waste space

• Directories are typically small
• Usually, 20 or fewer entries

• Some files are very large
• Must handle large files
• Large file access should be reasonably efficient

• File systems are usually about half full
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Multiple human-readable names

• Many file systems allow a given file to have multiple names

• Hard links are multiple file directory entries that map different path 
names to the same file number

• Symbolic Links or soft links are directory entries that map one name 
to another (effectively a redirect)

• Directories: file name -> low-level names (i.e., file numbers or indices)
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Directories

• A directory is a file that 
provides mappings from 
human-readable names to 
low-level names (i.e., file 
numbers):
• A list of human-readable 

names
• A mapping from each  name 

to a specific underlying file 
(including subdirectories)

• OSs use path name to find 
directories and files

music   320
work     219
foo.txt 871

File 871
"/home/eleanor/foo.txt"

File 818
"/home/eleanor"

ada 682    
eleanor 818
rett 830

File 158
"/home"
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File System Layout 

• File systems are stored on disks
• Disks can be divided into one or more partitions

• Sector 0 of disk called master boot record
• Executable boot loader
• End of MBR: partition table (contains partitions' start & end addr.)

• Remainder of disk divided into partitions
• First block of each partition is boot block (loaded by MBR on boot)
• The rest of the partition stores the file system
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Storing Files

Possible ways to allocate files:
• Continuous allocation: all bytes together, in order
• Linked structure: each block points to the next block
• Indexed structure: index block points to many other blocks
• Log structure: sequence of segments, each containing updates
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Which is the best?
• For sequential access?
• For random access?
• For small files?
• For large files?



Continuous Allocation

All bytes together, in order
• Simple: state required per file = start block & size
• Efficient: entire file can be read with one seek
• Fragmentation: external is bigger problem
• Usability: user needs to know size of file at time of creation
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Linked Allocation

Each file is stored as linked list of blocks: First word of each block points to next 
block, rest of disk block is file data 
• Simple: only need to store 1st block of each file
• Space Utilization: no space lost to external fragmentation 
• Performance: random access inside a file is slow
• Space Utilization: overhead of pointers 
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Linked Allocation: File Allocation Table (FAT)

• Developed by Microsoft for MS-DOS
• Still widely used for flash drives, camera cards, etc.
• Fat-32 supports 2!" blocks and files of 2#! − 1 bytes 
• File table: 

• Linear map of all blocks on disk 
• Each file a linked list of blocks 
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FAT File System

• 1 entry per block
• EOF for last block
• 0 indicates free block 
• low-level name = FAT index of 

first block in file
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FAT Directory Structure

Folder: a file with 32-byte entries
Each Entry: 
• 8-byte name + 3-byte extension (ASCII) 
• creation date and time
• last modification date and time
• first block in the file (index into FAT) 
• size of the file
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Exercise 1: Linked Allocation

• How many disk reads would be required to read (all of) a 2!" byte file 
named /foo/bar/baz.txt
• assume 4096-byte (4 KB or 2!" byte) blocks
• assume that all directories are small enough to fit in one block
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Exercise 1: Linked Allocation

• How many disk reads would be required to read (all of) a 2!" byte file 
named /foo/bar/baz.txt
• assume 4096-byte (4 KB or 2!" byte) blocks
• assume that all directories are small enough to fit in one block

1. read / directory block, find foo’s file number
2. read foo directory block, find bar’s file number
3. read bar’s directory block, find baz.txt’s file number
4. read baz.txt’s block 0
5. read ptr to block 1 in FAT
6. read baz.txt’s block 1
7. read ptr to block 2 in FAT

…
15. read ptr to block 6 in FAT
16. read baz.txt’s block 6
17. read ptr to block 7 in FAT
18. read baz.txt’s block 7
19. read EOF ptr in FAT 18



Evaluating FAT
How is FAT good?
• Simple: state required per file: start block only 
• Widely supported
• No external fragmentation
• block used only for data 

How is FAT bad?
• Poor locality 
• Many file seeks (unless entire FAT in memory)
• Poor random access 
• Limited metadata 
• Limited access control 
• Limitations on volume and file size 
• No support for reliability techniques 
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Indexed Allocation: Fast File System (FFS)

• tree-based, multi-level index

• superblock identifies file system's key parameters
• inodes store metadata and pointers
• datablocks store data
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FFS Superblock

• Identifies file system’s key parameters: 
• type
• block size
• inode array location and size 
• location of free list 
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FFS inodes
• inode blocks contain an array of 

inodes
• each inode contains:
• Metadata
• 12 data pointers
• 3 indirect pointers 
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inode Metadata
• Type
• ordinary file
• directory
• symbolic link 
• special device 

• Size of the file (in #bytes) 
• # links to the i-node 
• Owner (user id and group id) 
• Protection bits 
• Times: creation, last accessed, last 

modified 
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FFS Index Structures
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FFS Index Structures

12 ⋅ 2!" bytes directly
reachable from inode

2!# ⋅ 2!" bytes indirectly
reachable from inode

2"# ⋅ 2!" bytes doubly indirect

2$# ⋅ 2!" bytes triply indirect

Assume: blocks are 4KB (2!" bytes)
block references are 4 bytes 26



Exercise 2: Inode Structures

• Assume we are using the inode structure we just described and 
assume again that each block is 4K (212) and that each block 
reference is 4 bytes. 

• Which pointers in the inode of a 32KB file would be non-null?

• Which pointers in the inode of a 47MB file would be non-null?
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Exercise 2: Inode Structures

• Assume we are using the inode structure we just described and 
assume again that each block is 4K (2!%) and that each block 
reference is 4 bytes. 

• Which pointers in the inode of a 32KB file would be non-null?

• Which pointers in the inode of a 47MB file would be non-null?

28

the first 8 direct pointers

all 12 direct pointers, the indirect pointer, 
and the doubly-indirect pointer 



FFS Directory Structure

• Originally: array of 16-byte entries 
• 14-byte file name 
• 2 byte i-node number 

• Now: implicit list. Each entry contains: 
• 4-byte inode number 
• Full record length
• Length of filename 
• Filename

• First entry is “.”, points to self
• Second entry is “..”, points to parent inode
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Exercise 3: Indexed Allocation
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Which inodes and data blocks would need to be accessed to read (all of) file 
/foo/bar/baz?



Exercise 3: Indexed Allocation
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Which inodes and data blocks would need to be accessed to read (all of) file 
/foo/bar/baz? 1. inode #2 (root always has inumber 2), find root’s blocknum (912) 

2. root directory (in block 912), find foo’s inumber (31) 
3. inode #31, find foo’s blocknum (194) 
4. foo (in block 194), find bar’s inumber (73) 
5. inode #73, find bar’s blocknum (991) 
6. bar (in block 991), find baz’s inumber (40) 
7. inode #40, find data blocks (302, 913, 301) 
8. data blocks 302
9. data block  913
10. data block  301



Key Characteristics of FFS

• Tree Structure 
• efficiently find any block of a file 

• High Degree (or fan out) 
• minimizes number of seeks 
• supports sequential reads & writes 

• Fixed Structure 
• implementation simplicity 

• Asymmetric 
• not all data blocks are at the same level 
• supports large files
• small files don’t pay large overheads 
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Implementation Basics

• Directories: file name -> low-level names (i.e., file numbers)

• Index structures: file number -> block

• Free space maps: find a free block (ideally nearby)
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Free List

To write files, need to keep track of which blocks are currently free
How to maintain?
• linked list of free blocks 
• inefficient (why?)

• linked list of metadata blocks that in turn point to free blocks 
• simple and efficient 

• bitmap 
• actually used
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Problem: Poor Performance

• In a naïve implementation of FFS, performance starts bad and gets 
worse 
• One early implementation delivered only 2% disk bandwidth
• The root of the problem: poor locality
• data blocks of a file were often far from its inode
• file system would end up highly fragmented: accessing a  logically continuous 

file would require going back and forth across the 
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Implementation Basics

• Directories: file name -> low-level names (i.e., file numbers)

• Index structures: file number -> block

• Free space maps: find a free block (ideally nearby)

• Performance optimizations (e.g., locality heuristics)
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Solution 1: Disk Awareness

• modern drives export a logical address space of blocks that are 
(temporally) close 
• modern versions of FFS (e.g., ext4) organize the drive into block 

groups composed of consecutive portions of the disk's logical address 
space
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Allocating Blocks
• FFS manages allocation per block group
• A per-group inode bitmap (ib) and data bitmap (db)

• Allocating directories: 
• find a group with a low number of allocated directories & high number of 

free inodes; put the directory data + inode there
• OR group directories

• Allocating files: 
• place all file data in same group
• uses first-fit heuristic
• reserves ~10% space to avoid deterioration of first-fit

• Defragmentation

ib db
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Other Solutions

• Page Cache: to reduce costs of accessing files, cache 
file contents in memory (e.g., device data, memory-
mapped files)

• Copy-on-write (COW): create new, updated copy at 
time of update

• Write Buffering: buffer writes and periodically flush to 
disk
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