File Systems

System 1/O as a Uniform Interface

Operating systems use a uniform system 1/0 interface for all I/O devices
Commands to read and write to a file descriptor are the same no matter what type of "file"

Types of files include

* File (input/output)
Keyboard (input)
Screen (output)

Pipe (input/output)
Network (input/output
Etc.

Our First I/O System:

Long-term information storage goals

e Should be able to store large amounts of information

* Information must survive processes, power failures, etc.

* Processes must be able to find information

* Needs to support concurrent accesses by multiple processes

Solution: the file system abstraction

* Interface that provides operations involving: Files and Directories
* Directories are just a special kind of file

The File System Abstraction

Interface that provides operations on data stored long-term on disk

A file is a named sequence of stored bytes
* Name is defined on creation
* Processes use name to subsequently access that file

A file comprises two parts:
* Data: information a user or application puts in a file (an array of untyped bytes)
* Metadata: information added and managed by the OS (e.g., size, owner, security info, modification time)

Two types of files
* Normal files: data is an arbitrary sequence of bytes

* Directories: a special type of file that provides mappings from human-readable names to low-level names
(i.e., File numbers)

The File System Stack
Application

Today’s Focus | -------- POSIX APl (open, read, write, close, ...) s LT

File System Kernel Mode

Generic Block Interface (block read/write)

Generic Block Layer

Specific Block Interface (protocol-specific read/write)

Device Driver

File System Challenges

* Performance: despite limitations of disks
* Flexibility: need to support diverse file types and workloads
* Persistence: store data long term

* Reliability: resilient to OS crashes and hardware failures

Common File System Properties

* Most files are small
* Need strong support for small files (optimize the common case)
* Block size can't be too big, or we’ll waste space

* Directories are typically small
e Usually, 20 or fewer entries

* Some files are very large

* Must handle large files
 Large file access should be reasonably efficient

* File systems are usually about half full

Multiple human-readable names

* Many file systems allow a given file to have multiple names

* Hard links are multiple file directory entries that map different path
names to the same file number

* Symbolic Links or soft links are directory entries that map one name
to another (effectively a redirect)

* Directories: file name -> low-level names (i.e., file numbers or indices)

Directories

e A directory is a file that
provides mappings from
human-readable names to
low-level names (i.e., file
numbers):

e A list of human-readable
names

* A mapping from each name
to a specific underlying file
(including subdirectories)

* OSs use path name to find
directories and files

) o S—

home 158

eleanor 818

music 320

L-File 818

"/home/eleanor" | Work 219

foo.txt 871

t> File 871
"/home/eleanor/foo.txt"

The quitx
brown fox
jumped
over the
lazy dog.

File System Layout

* File systems are stored on disks
* Disks can be divided into one or more partitions

e Sector 0 of disk called master boot record
* Executable boot loader
* End of MBR: partition table (contains partitions' start & end addr.)

 Remainder of disk divided into partitions
* First block of each partition is boot block (loaded by MBR on boot)
* The rest of the partition stores the file system

- PARTITION #1

MBR PARTITION
TABLE

10

Storing Files

Possible ways to allocate files:

* Continuous allocation: all bytes together, in order

* Linked structure: each block points to the next block

* Indexed structure: index block points to many other blocks

* Log structure: sequence of segments, each containing updates

Which is the best?

* For sequential access?
 For random access?

* For small files?

* For large files?

11

Continuous Allocation

All bytes together, in order

e Simple: state required per file = start block & size

e Efficient: entire file can be read with one seek

* Fragmentation: external is bigger problem

» Usability: user needs to know size of file at time of creation

filel file2 file3 filed4 file5

12

Linked Allocation

Each file is stored as linked list of blocks: First word of each block points to next
block, rest of disk block is file data

e Simple: only need to store 1st block of each file
e Space Utilization: no space lost to external fragmentation
* Performance: random access inside a file is slow

* Space Utilization: overhead of pointers
File A

Physical
Block

13

Linked Allocation: File Allocation Table (FAT)

* Developed by Microsoft for MS-DOS
e Still widely used for flash drives, camera cards, etc.
* Fat-32 supports 248 blocks and files of 234 — 1 bytes

* File table:
* Linear map of all blocks on disk
e Each file a linked list of blocks

=

32 bit entries

FAT File System

* 1 entry per block
e EOF for last block
* 0 indicates free block

e l[ow-level name = FAT index of

first block in file

Directory
bart.txt 9
maggie.txt| 12

0 N O o A W N = O

|2 I e e e e e T G S
O © 0 N O o o @O N =+ O ©

.........

Goeet

Gooot

EOF

..............

Data Blocks

File 9 Block 3

File 9 Block O
File 9 Block 1
File 9 Block 2

File 9 Block 4

File 9

W Fie 12

15

FAT Directory Structure

Folder: a file with 32-byte entries

Each Entry:

* 8-byte name + 3-byte extension (ASCII)
* creation date and time

* [ast modification date and time

e first block in the file (index into FAT)

* size of the file

~

music 320
work 219
foo.txt 871

Exercise 1: Linked Allocation

» How many disk reads would be required to read (all of) a 21° byte file
named /foo/bar/baz.txt

* assume 4096-byte (4 KB or 212 byte) blocks
e assume that all directories are small enough to fit in one block

Exercise 1: Linked Allocation

» How many disk reads would be required to read (all of) a 21° byte file
named /foo/bar/baz.txt

* assume 4096-byte (4 KB or 212 byte) blocks
* assume that all directories are small enough to fit in one block

read / directory block, find foo’s file number

read foo directory block, find bar’s file number
read bar’s directory block, find baz.txt’s file number
read baz.txt’s block 0

read ptr to block 1 in FAT

read baz.txt’s block 1

read ptr to block 2 in FAT

N o sk wbhE

15. read ptr to block 6 in FAT
16. read baz.txt’s block 6

17. read ptr to block 7 in FAT
18. read baz.txt’s block 7

19. read EOF ptrin FAT

Evaluating FAT

How is FAT good?

Simple: state required per file: start block only
Widely supported
No external fragmentation

block used only for data

How is FAT bad?

Poor locality

Many file seeks (unless entire FAT in memory)
Poor random access

Limited metadata

Limited access control

Limitations on volume and file size

No support for reliability techniques

Indexed Allocation: Fast File System (FFS)

e tree-based, multi-level index

 superblock identifies file system's key parameters
* inodes store metadata and pointers
* datablocks store data

blocknumber 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

| [

super i-node Remaining blocks
block blocks

21

FFS Superblock

* |dentifies file system’s key parameters:
¢ type
* block size

* inode array location and size
* location of free list

blocknumber 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I |

super i-node Remaining blocks
block blocks

22

FFS inodes

- inode blocks contain an array of
inodes

- each inode contains:

- Metadata
- 12 data pointers

- 3 indirect pointers

block number 0 1 3 4 5 6 7
blocks:

J

i I
superblock 1-node blocks Remaining blocks

Inode

File Metadata

Direct Pointer

DP

DP

DP

DP

DP

DP

DP

DP

DP

DP

Direct Pointer

Indirect Pointer |-

Dbl. Indirect Ptr. |-

Tripl. Indirect Ptr. |-

23

inode Metadata

* Type
e ordinary file
 directory
* symbolic link
 special device

e Size of the file (in #bytes)

* # links to the i-node

* Owner (user id and group id)
* Protection bits

* Times: creation, last accessed, last
modified

File
Metadata

Direct Pointer

DP

DP

DP

DP

DP

DP

DP

DP

DP

DP

Direct Pointer

Indirect Pointer

Dbl. Indirect Ptr.

Tripl. Indirect Ptr.

24

FFS Index Structures

Inode Array

Inode

File Metadata

Direct Pointer

DP

DP

DP

DP

DP

DP

DP

DP

DP

DP

Direct Pointer

Indirect Pointer

Dbl. Indirect Ptr.

*[Tripl. Indirect Ptr.

Triple Double
Indirect Indirect Indirect Data
Blocks Blocks Blocks Blocks

25

FFS Index Structures

Inode Array

Inode

File Metadata

Direct Pointer

DP
DP
DP
DP
DP
DP
DP
DP
DP

Direct Pointer §---
Indirect Pointer §----

| Dbl. Indirect Ptr. b

-~ Tripl. Indirect Ptr. ----

Assume: blocks are 4KB (212 bytes) T 5
block references are 4 bytes 5

Triple Double
Indirect Indirect Indirect Data
Blocks Blocks Blocks Blocks

12 - 212 bytes directly
reachable from inode

DP N

220 .212

26

Exercise 2: Inode Structures

* Assume we are using the inode structure we just described and
assume again that each block is 4K (214) and that each block
reference is 4 bytes.

* Which pointers in the inode of a 32KB file would be non-null?

* Which pointers in the inode of a 47MB file would be non-null?

Exercise 2: Inode Structures

* Assume we are using the inode structure we just described and
assume again that each block is 4K (21%) and that each block
reference is 4 bytes.

* Which pointers in the inode of a 32KB file would be non-null?

the first 8 direct pointers

* Which pointers in the inode of a 47MB file would be non-null?

all 12 direct pointers, the indirect pointer,
and the doubly-indirect pointer

28

FFS Directory Structure

* Originally: array of 16-byte entries
* 14-byte file name
e 2 byte i-node number

* Now: implicit list. Each entry contains:
* 4-byte inode number
* Full record length
* Length of filename
* Filename

“wr

* First entry is “”, points to self

o »”

e Second entry is “..”, points to parent inode

Exercise 3: Indexed Allocation

Which inodes and data blocks would need to be accessed to read (all of) file

/foo/bar/baz?

'Ifie 23 d I hearl |bin 47]nd I1 |baz 40
[far 81| | stand 2oagett]...[foo 31|remembel Ini 8@
:bar‘ 73 ‘ I see a usr 98 and I nit 87
2 31 40 73 E 194 301 302 912 913 991
inodes ' data blocks

30

Exercise 3: Indexed Allocation

Which inodes and data blocks would need to be accessed to read (all of) file

/foo/ba r/baz? 1. inode #2 (root always has inumber 2), find root’s blocknum (912)
root directory (in block 912), find foo’s inumber (31)

inode #31, find foo’s blocknum (194)

foo (in block 194), find bar’s inumber (73)

inode #73, find bar’s blocknum (991)

bar (in block 991), find baz’s inumber (40)

inode #40, find data blocks (302, 913, 301)

data blocks 302

data block 913

10. data block 301

O N O U R WwN

'lfie 23 d I hearl |bin 47]nd I1 |baz 40

[far 81| | stand 2oagett]...[foo 31|remembel Ini 8@

:bar‘ 73 : I see a usr 98|and 1 nit 87
2 31 40 73 E 194 301 302 912 913 991

inodes data blocks

31

Key Characteristics of FFS

* Tree Structure
* efficiently find any block of a file

* High Degree (or fan out)
* minimizes number of seeks
* supports sequential reads & writes

e Fixed Structure
* implementation simplicity
* Asymmetric
* not all data blocks are at the same level

* supports large files
* small files don’t pay large overheads

Implementation Basics

* Directories: file name -> low-level names (i.e., file numbers)
* Index structures: file number -> block

* Free space maps: find a free block (ideally nearby)

Free List

To write files, need to keep track of which blocks are currently free

How to maintain? s N e TN e

* linked list of free blocks
* inefficient (why?)

* linked list of metadata blocks that in turn point to free blocks

* simple and efficient = >

* bitmap 4 D XN
* actually used ’—{/l b\ l\}w

Problem: Poor Performance

* In a naive implementation of FFS, performance starts bad and gets
worse

* One early implementation delivered only 2% disk bandwidth

* The root of the problem: poor locality

e data blocks of a file were often far from its inode

* file system would end up highly fragmented: accessing a logically continuous
file would require going back and forth across the

Implementation Basics

* Directories: file name -> low-level names (i.e., file numbers)
* Index structures: file number -> block
* Free space maps: find a free block (ideally nearby)

* Performance optimizations (e.g., locality heuristics)

Solution 1: Disk Awareness

* modern drives export a logical address space of blocks that are
(temporally) close

* modern versions of FFS (e.g., ext4) organize the drive into block
groups composed of consecutive portions of the disk's logical address
space

Group 0 Group 1 Group 2

Allocating Blocks

* FFS manages allocation per block group
* A per-group inode bitmap (ib) and data bitmap (db)

T T T e

ib db i-node Remaining blocks
blocks

* Allocating directories:

e find a group with a low number of allocated directories & high number of
free inodes; put the directory data + inode there 100% -

* OR group directories ® HSom

80%
 Allocating files:
» place all file data in same group
 uses first-fit heuristic
* reserves ~10% space to avoid deterioration of first-fit

60% -

40%

Cumulative Frequency

20%

* Defragmentation 39

0%

Other Solutions

* Page Cache: to reduce costs of accessing files, cache
file contents in memory (e.g., device data, memory-
mapped files)

* Copy-on-write (COW): create new, updated copy at
time of update

* Write Buffering: buffer writes and periodically flush to
disk

40

