Threads

Drawing: Virtual Memory

e Take three minutes to draw “virtual memory”

* Some reminders
 Hardware (MMU, TLB)
* Virtual memory, physical memory, secondary storage
Operating Systems
Virtual Address Spaces
Page tables, page directories
Multi-level page tables
Address translation
Page faults

('\ = C
Ve Virel Memard Phy <ic=\
OK;.@ : /Aidfcgf lmm@ldr\/

— o RAM
| (0> [AU [T y
om0 TLR T
1 Heoo | Mo e —
S | -
'J_WQJ&O - —

Threading

* One of my favorite subjects in CS and programming

* Challenging, but very rewarding when you get something
implemented correctly

Pedagogically Annoying Note

* | could teach one of (or both) two thread libraries:
* The
* Or

* There is not currently a correct answer for this
* | am only going to teach one to reduce confusion

* C11 will be the library to use for all new C projects in which you can
use a modern compiler

e But you are more likely to see legacy C code than write new C code
* So, we’ll go with pthreads

https://en.cppreference.com/w/c/thread
https://man7.org/linux/man-pages/man7/pthreads.7.html

Single Process, Multiple Threads

Program Structure: expressing logically
concurrent programs

* Spell-check
* Autosaving
* Etc.

. MBS S

|

Responsiveness: managing /O devices

Responsiveness: shifting work to run
in the background

15
e |1.06
- 1 Q
O 0.54
(7))
6‘0'5 - : .
o o—=o
0 ‘
1 4 1
2I'hreads 8 6

Performance: exploiting multiprocessors

Current View of a Process

rsp

brk

rip—»

0

Virtual Memory

Process

Process State

Files

Registers

OS Meta Data

View of a Process

Process
rlp —_— brk —
Virtual Memory Process State
Main Thread

rsp -_

View of a Process

Process

Process State

rlp_, brk —

rip—»

Virtual Memory

Main Thread Secondary Thread

rsp -_ rsp -_

View of a Process

Process
rip — : brk —
rip —_— .
Virtual Memory Process State
Main Thread Secondary Thread Secondary Thread 2

Registers Registers

Registers

LSP - rsp - rsp -

H I I

U

A Process With Multiple Threads

Multiple threads can be associated with a single process
* Each thread has its own logical control flow

e Each thread has its own stack for local variables

e Each thread has its own thread id (TID)

 Each thread shares the same code, data, and kernel context
Shared data

Thread 1 (main thread) Thread 2 (peer thread)
rsp - rsp —-

Threads vs. Processes

How threads and processes are similar

e Each has its own logical control flow

* Each can run concurrently with others (possibly on different cores)
* Each is scheduled and context switched

How threads and processes are different
* Threads share all code and data (except local stacks)

* Threads are somewhat less expensive than processes

* Thread control (creating and reaping) is half as expensive as process control
e ~20K cycles to create and reap a process
e ~10K cycles (or less) to create and reap a thread

* Thread context switches are less expensive (e.g., don't flush TLB)

Logical View of Threads

* Threads associated with process form a pool of peers

* Unlike processes which form a tree hierarchy

How does
PO create
P1?

PO

P1

sh

sh

sh

foo

bar

®

shared code, data
and kernel context

®

T4

13

Posix Threads Interface (Pthreads)

* Creating and reaping threads
* pthread create()
* pthread join ()

* Determining your thread ID
* pthread self ()

* Terminating threads
* pthread cancel ()
* pthread exit ()
e exit () [terminates all threads]
e RET [terminates current thread]

The Pthreads "hello, world" Program

MaN

/

/*

X et tooT ds "hello, world" program
* / N
 Thread ID
volid *thread(void *vprgp);

int main ()

—~—
_bthread t tid;

~

pthread create(&tid, NULL, thread, NULLLL__

pthread join(tid, NULJY);
exit (0);
}

void *thread(void *vargp) /* thread routine */

{
printf ("Hello, world!\n");

return NULL;

Thread attributes
(usually NULL)

e

Thread routine

_— |

Thread arguments
(void *p)

Return value
(void **p)

} hello.c

15

Example Program to Illustrate Sharing
Where char **ptr; /* global var */ CO/C[(lL(W'\
isptr int main() {\QC/‘Q'
stored? { Where
. is
;Eiie;é_t ids \{fOid *thread (void *vargp) myid
Where Char"*msgs[Z] = . long myid = (long)vargp; stored?
1S fiello from foo", static int cnt = 0;
msgs "Hello from bar"
stored? ' printf("[$1d]: $s (cre=tei\n", stgirf
ptr = msgs; returiy;aftr[myld] ' stored?
for (i = 0; 1 < 2; i++) } /
pthread create(
&tid, / . y
NULL, Peer threads reference main thread’s stack
thread, indirectly through global ptr variable
).(void)i O : \(\Q \\0 «%@W\ 'QOO <C,/\Jv:@\
pthread exit (NULL) ; . (—
} \ - Hello N ot % 2)

Mapping Variable Instances to Memory

* Global variables
* Def: Variable declared outside of a function
 Virtual memory contains exactly one instance of any global variable

e Local variables
* Def: Variable declared inside function without static attribute
e Each stack frame contains one instance of each local variable

* Local static variables
* Def: Variable declared inside function with the static attribute
 Virtual memory contains exactly one instance of any local static variable.

17

Mapping Variable Instan

ces to Memory

char **ptr; /* global var */

«

int main () {
long 1i;
pthread t tid;
char *msgs[2] = {"Hello from foo",

"Hello from bar"};
<=

Global var: 1 instance (ptr [data])

——/ocal vars: 1instance (1.m, msgs.m)

ptr = msgs; «

for (int 1 = 0; 1 < 2; i++)
pthread create(&tid, NULL,
thread, (void *)1);

pthread exit (NULL) ;
}

Local var: 2 instances |
myid.pO [peer thread O’s stack],

void *thread(void *vargp) { *”’,//”"

long myid = (long)vargp;
static int cnt = 0; <«

myid.pl [peer thread 1’s stack]

printf (" [%1d]: %s (cnt=%d)\n",
myid, ptrlmyid], ++cnt);
return NULL;

— Local static var: 1 instance (cnt [data])

18

Practice with Shared Variables

char **ptr; /* global var */

int main () {

long 1i;
pthread t tid;
char *msgs[2] = {"Hello from foo",

"Hello from bar"};
ptr = msgs;
for (int 1 = 0; 1 < 2; 1i++)
pthread create(&tid, NULL,
thread, (void *)i);
pthread exit (NULL) ;
}

volid *thread(void *vargp) {
long myid = (long)vargp;
static int cnt = 0;

printf (" [%1d]: %s (cnt=%d)\n",
myid, ptrlmyid], ++cnt);
return NULL;

Which variables are
shared?

* ptr

* cnt

* 1.malin

* msgs.maln
myld.threadO
myid.threadl

19

Practice with Shared Variables

char **ptr; /* global var */
Which variables are

mfoizl?f) { shared?
pthread t tid; * ptr
char *msgs[z] = {"Hello from foo", e cnt A variable x is shared iff multiple threads
‘Hello from bar®y; * 1 .main reference at least one instance of x.

ptr = msgs;

for (int i = 0; 1 < 2; i++) * msgs.maln

pthread create(&tid, NULL, * myid.thread0
thread, (void *)1); . myj_d .threadl
pthread exit (NULL) ;
} B Variable Referenced by Referenced by Referenced by
instance main thread? peer thread 0? peer thread 17
volid *thread(void *vargp) {
long myid = (long)vargp; ptr yes yes yes
static int cnt = 0; cnt no yes yes
1.main yes no no
printf("[%ld]: %s (§nt=%d)\n", msgs.main ves yes yes
myid, ptrlmyid], ++cnt); myid.thread0 no yes no

return NULL; .
myid.threadl no no yes

What can go wrong?

int main(int argc,

/* Global shared variable */
volatile long cnt = 0;

/* Counter */

char **argv) {
long num incs;
pthread t tidl, tidZ;
num_incs = atoil (argv[l]);
pthread create(&tidl, NULL,
pthread create(&tid2, NULL,
pthread join(tidl, NULL);
pthread join(tid2, NULL);

thread,
thread,

/* Check result */

1f (cnt !'= (2 * num 1incs))

printf ("BOOM! cnt=%1d\n", cnt);
else

printf ("OK cnt=%1d\n", cnt);
exit (0);

&num_1incs) ;
&num_1incs) ;

/* Thread routine */
void *thread(void *vargp) {
long 1, num incs;

num 1incs =

for (1 = 0;
cnt++;

1 < num incs;

return NULL;

*((long *)vargp);

i++) {

linux> ./badcnt 10000
OK cnt=20000

linux> ./badcnt 10000
BOOM! cnt=13051
linux>

21

thread:

.L3:

L2

cnt:

mov
test
Jle
mov

mov
add
mov
add
cmp
Jne

mov
ret

NVASHNO)

rcx, OWORD PTR ' rdi
rcx, Ircx

L2

edx

rax, QWORD PTR cnt rip
rax

QWORD PTR cnt rip rax
rdx

rcx, rdx

L3

eax

/* Thread routine */
void *thread(void *vargp) {
long 1, num incs;

num incs = *((long *)vargp):;
for (1 = 0; 1 < num incs; 1i++){
cnt++;

return NULL;

Load cnt
Increment register holding cnt
Store new value back to cnt

22

thread:

L3

L2

cnt:

What happens if the thread is preempted in the middle?

mov
test
Jle
mov

mov
add
mov
add
cmp
Jne

mov
ret

NVASENG®,

rcx, OWORD PTR ' rdi
rcx, rcx

L2

edx

rax, QWORD PTR cnt rip
rax

QWORD PTR cnt rip rax
rdx

rcx, rdx

L3

eax

void *thread(void *vargp) {
long 1, num incs;

/* Thread routine */

num incs = *((long *)vargp):;
for (1 = 0; 1 < num incs; 1++) {
cnt++;

return NULL;

Load cnt
Increment register holding cnt
Store new value backto cnt

Thread 1
1. Load cnt

Increment register
6. Storecnt

Thread 2

2. Load cnt

3. Increment register
4. Storecnt

23

Race conditions

* A race condition is a timing-dependent error involving shared state
 Whether the error occurs depends on thread schedule

* Program execution/schedule can be non-deterministic

* Compilers and processors can re-order instructions

A concrete example...

* You and your roommate share a refrigerator. Being good roommates, you
both try to make sure that the refrigerator is always stocked with milk.

* Liveness: if you are out of milk, someone buys milk

 Safety: you never have more than one quart of milk

Algorithm 1: Algorithm 1.
(23]
Look in fridge. if (milk == 0) { // no milk
If out of milk: milk++; // buy milk
go to store, ¥
buy milk,
go home

put milk in fridge

A problematic schedule

You Your Roommate
3:00 Look in fridge; out of milk

3:05 Leave for store

3:10 Arrive at store 3:10 Look in fridge; out of milk
3:15 Buy milk 3:15 Leave for store

3:20 Arrive home 3:20 Arrive at store

3:21 Put milk in fridge 3:25 Buy milk

3:30 Arrive home
3:31 Put milk in fridge

Safety violation:
You have too much milk and it spoils

26

Solution 1: Leave a note

* You and your roommate share a refrigerator. Being good roommates,
you both try to make sure that the refrigerator is always stocked with
milk.

()
Algorithm 2: Algorithm 2:
if (milk == 0) { // no milk if (milk == 0) { // no milk
if (note == 0) { // no note if (note == 0) { // no note
note = 1; // leave note note = 1; // leave note
milk++; // buy milk milk++; // buy milk

note = O,' // remove note note = O; // remove note
} }
} }

Solution 1: Leave a note

* You and your roommate share a refrigerator. Being good roommates,
you both try to make sure that the refrigerator is always stocked with
milk.

Safety violation: you've introduced a Heisenbug!

Algorithm 2: Algorithm 2:

28

Solution 2: Leave note before check note

* You and your roommate share a refrigerator. Being good roommates,
you both try to make sure that the refrigerator is always stocked with

milk.

Algorithm 3:

notel = 1
if (note2 == 0) {
if (milk == 0) {
milk++;
}
}

| - notel

0

Algorithm 3:

note?2 =1
if (notel == 0) {
if (milk == 0) {
milk++;
}
}

note?

0

Solution 2: Leave note before check note

* You and your roommate share a refrigerator. Being good roommates,
you both try to make sure that the refrigerator is always stocked with
milk.

Liveness violation: No one buys milk

/ﬂ/—,_‘
(2>

—

Algorithm 3: Algorithm 3:

30

Solution 3: Keep checking for note

* You and your roommate share a refrigerator. Being good roommates,
you both try to make sure that the refrigerator is always stocked with

milk.

Algorithm 4:

notel
while

}

1f (milk == 0)

1
(note?2 == 1)

milk++;

}

| - notel

0

Algorithm 4:

note?2 =1

while (notel == 1) {

}

if (milk == 0) {
milk++;

}
note?2 = 0

Solution 3: Keep checking for note

* You and your roommate share a refrigerator. Being good roommates,

you both try to make sure that the refrigerator is always stocked with

milk.
Liveness violation: You've introduced deadlock

Algorithm 4: Algorithm 4:
()
notel =1 notez =1
while (note2 == 1) { while (notel == 1) {
} }
if (milk == 0) { if (milk == 0) {
milk++; milk++;

} }
notel = 0 note?2 = 0

32

Solution 4: Take turns

* You and your roommate share a refrigerator. Being good roommates,
you both try to make sure that the refrigerator is always stocked with
milk.

Algorithm 5: Algorithm 5:
()
notel =1 notez =1
turn = 2 turn = 2
while (note2 == 1 and turn == 2){ while (notel == 1 and turn == 2){
} }
if (milk == 0) { if (milk == 0) {
milk++; milk++;

} }
notel = 0 note?2 = 0

Solution 4: Take turns

* You and your roommate share a refrigerator. Being good roommates,
you both try to make sure that the refrigerator is always stocked with
milk.

(probably) correct, but complicated and inefficient

Algorithm 5: Algorithm 5:

34

Locks

A lock (aka a mutex) is a synchronization primitive that provides mutual
exclusion. When one thread holds a lock, no other thread can hold it.

e A lock can be in one of two states: locked or unlocked
* A lock is initially unlocked

* Function acqguire (&1lock) waits until the lock is unlocked, then
atomically sets it to locked

* Function release (&1ock) sets the lock to unlocked

Solution 5: use a lock

* You and your roommate share a refrigerator. Being good roommates,

you both try to make sure that the refrigerator is always stocked with
milk.

Algorithm 6: Algorithm 6:

acquire (&milk lock) acquire (&milk lock)

if (milk == 0) { if (milk == 0) {
milk++; milk++;

} }

release (&milk lock) release (&milk lock)

Solution 5: use a lock

* You and your roommate share a refrigerator. Being good roommates,
you both try to make sure that the refrigerator is always stocked with
milk.

Simpler and Correct!

Algorithm 6: Algorithm 6:

37

Atomic Operations

* Solution: hardware primitives to support synchronization

* A machine instruction that (atomically!) reads and updates a memory
location

* Example: xchg DEST, SRC

* one instruction
e semantics: TEMP — DEST; DEST SRC; SRC « TEMP;

Spinlocks

acquire:
mov eax, 1 ; Set EAX to 1
xchg [rdi], eax ; Atomically swap EAX w/ lock val
test eax, eax ; Check 1f EAX 1s 0 (lock unlocked)
jnz acquire ; If was locked, loop
ret ; Lock has been acquired, return
release:
XOr eax, eax ; Set EAX to O
xchg [rdi], eax ; Atomically swap EAX w/ lock val
ret ; Lock has been released, return

Programming with Locks (Pthreads)

* Defines lock type pthread mutex t

* Functions to create/destroy locks:
* int pthread mutex init(&lock, attr);
* int pthread mutex destroy (&lock);

* Functions to acquire/release lock:
* int pthread mutex lock(&lock);
* int pthread mutex unlock (&lock);

Practice with Locks

/* Global shared variable */
volatile long cnt = 0; /* Counter */

int main(int argc, char **argv) {
long num incs;
pthread t tidl, tidZ;

num_incs = atoil (argv[l]);
pthread create(&tidl, NULL, thread, &num incs);
pthread create(&tid2, NULL, thread, &num incs);
pthread join(tidl, NULL);
pthread join(tid2, NULL);

/* Check result */

1f (cnt !'= (2 * num 1incs))

printf ("BOOM! cnt=%1d\n", cnt);
else

printf ("OK cnt=%1d\n", cnt);
exit (0);

/* Thread routine */
void *thread(void *vargp) {
long 1, num incs;

num incs = *((long *)vargp):;
for (1 = 0; 1 < num incs; 1++) {
cnt++;

return NULL;

Modify this example to
guarantee correctness

41

Practice with Locks

Create lock

/* Global shared variable */
volatile long cnt = 0; /* Counter */

int main(int argc, char **argv) {
long num incs;
pthread t tidl, tidZ;

num_incs = atoil (argv[l]);
pthread create(&tidl, NULL, thread,
pthread create(&tid2, NULL, thread,
pthread join(tidl, NULL);
pthread join(tid2, NULL);

/* Check result */

1f (cnt !'= (2 * num 1incs))

printf ("BOOM! cnt=%1d\n", cnt);
else

printf ("OK cnt=%1d\n", cnt);
exit (0);

Acquire lock

&num

&num

- Release |

ock

/* Thread routine */
void *thread(void *vargp) {

long 1, num incs;

num incs = *((long *)vargp):;

for (1 = 0; 1 < num incs; 1++) {
cnt++;

}

return NULL;

Modify this example to
guarantee correctness

42

Problems with Locks

1. Locks are slow

* Threads that fail to acquire a lock on the first attempt must "spin", which
wastes CPU cycles

* Threads get scheduled and de-scheduled while the lock is still locked

2. Using locks correctly is (surprisingly) hard
* Hard to ensure all race conditions are eliminated
e Easy to introduce synchronization bugs (deadlock, livelock)
e Gets much harder when you have multiple needed resources

Better Synchronization Primitives

* Semaphores
 Stateful synchronization primitive

* Condition variables
* Event-based synchronization primitive

* These are the topic of our next class period

