
Threads

Drawing: Virtual Memory

• Take three minutes to draw “virtual memory”

• Some reminders
• Hardware (MMU, TLB)
• Virtual memory, physical memory, secondary storage
• Operating Systems
• Virtual Address Spaces
• Page tables, page directories
• Multi-level page tables
• Address translation
• Page faults

2

3

Threading

• One of my favorite subjects in CS and programming

• Challenging, but very rewarding when you get something
implemented correctly

4

Pedagogically Annoying Note

• I could teach one of (or both) two thread libraries:
• The C11 standard implementation for concurrency
• Or POSIX threads (pthreads)

• There is not currently a correct answer for this
• I am only going to teach one to reduce confusion
• C11 will be the library to use for all new C projects in which you can

use a modern compiler
• But you are more likely to see legacy C code than write new C code
• So, we’ll go with pthreads

5

https://en.cppreference.com/w/c/thread
https://man7.org/linux/man-pages/man7/pthreads.7.html

Single Process, Multiple Threads

1.06

0.54
0.28 0.29 0.3

0

0.5

1

1.5

1 2 4 8 16
El

ap
se

d
tim

e
(s

)
Threads

Program Structure: expressing logically
concurrent programs

Responsiveness: shifting work to run
in the background

Performance: exploiting multiprocessors
Responsiveness: managing I/O devices

• Spell-check
• Autosaving
• Etc.

6

Current View of a Process

7

Files

0

Virtual Memory

rsp

rip

brk

Code
Data

Stack

Heap

Process State

Registers

OS Meta Data

Process

Threaded View of a Process

8

Files

Virtual Memory

brk

Code Data

Stack

Heap

Process State

Registers

OS Meta Data

Main Thread

rsp

rip
Process

Threaded View of a Process

9

Files

brk

Code Data

Stack

Heap

Registers

OS Meta Data

Main Thread

Stack

Registers

Secondary Thread

rsp

rip

rsp

rip
Virtual Memory Process State

Process

Threaded View of a Process

10

Files

brk

Code Data

Stack

Heap

Registers

OS Meta Data

Main Thread

Stack

Registers

Secondary Thread

rsp

rip

rsp

rip
Virtual Memory Process State

Process

Stack

Registers

Secondary Thread 2

rsp

rip

A Process With Multiple Threads

Multiple threads can be associated with a single process
• Each thread has its own logical control flow
• Each thread has its own stack for local variables
• Each thread has its own thread id (TID)
• Each thread shares the same code, data, and kernel context

Shared data
Thread 2 (peer thread)Thread 1 (main thread)

Thread 1 context:
Data registers
Stack pointer
Condition codes
Program counter

rsp
Stack 1

Thread 2 context:
Data registers
Stack pointer
Condition codes
Program counter

rsp
Stack 2

Kernel context:
VM structures
File table
brk pointer

0

brk

Code
Data

Heap

11

Threads vs. Processes

How threads and processes are similar
• Each has its own logical control flow
• Each can run concurrently with others (possibly on different cores)
• Each is scheduled and context switched

How threads and processes are different
• Threads share all code and data (except local stacks)
• Threads are somewhat less expensive than processes

• Thread control (creating and reaping) is half as expensive as process control
• ~20K cycles to create and reap a process
• ~10K cycles (or less) to create and reap a thread

• Thread context switches are less expensive (e.g., don't flush TLB)

12

Logical View of Threads

• Threads associated with process form a pool of peers
• Unlike processes which form a tree hierarchy

P0

P1

sh sh sh

foo

bar

Process hierarchy Threads associated with process foo

shared code, data
and kernel context

How does
P0 create

P1? T1

T2
T4

T5 T3

13

Posix Threads Interface (Pthreads)

• Creating and reaping threads
• pthread_create()
• pthread_join()

• Determining your thread ID
• pthread_self()

• Terminating threads
• pthread_cancel()
• pthread_exit()
• exit() [terminates all threads]
• RET [terminates current thread]

14

The Pthreads "hello, world" Program
/*
* hello.c - Pthreads "hello, world" program
*/

void *thread(void *vargp);

int main()
{

pthread_t tid;
pthread_create(&tid, NULL, thread, NULL);
pthread_join(tid, NULL);
exit(0);

}

void *thread(void *vargp) /* thread routine */
{

printf("Hello, world!\n");
return NULL;

}

Thread attributes
(usually NULL)

Thread arguments
(void *p)

Return value
(void **p)

hello.c

Thread ID

Thread routine

15

Example Program to Illustrate Sharing

16

char **ptr; /* global var */

int main()
{

long i;
pthread_t tid;
char *msgs[2] = {

"Hello from foo",
"Hello from bar"

};

ptr = msgs;
for (i = 0; i < 2; i++)

pthread_create(
&tid,
NULL,
thread,
(void *)i

);
pthread_exit(NULL);

}

void *thread(void *vargp)
{

long myid = (long)vargp;
static int cnt = 0;

printf("[%ld]: %s (cnt=%d)\n",
myid, ptr[myid], ++cnt);

return NULL;
}

Peer threads reference main thread’s stack
indirectly through global ptr variable

Where
is

msgs
stored?

Where
is ptr
stored? Where

is
myid

stored?

Where
is cnt
stored?

Mapping Variable Instances to Memory

• Global variables
• Def: Variable declared outside of a function
• Virtual memory contains exactly one instance of any global variable

• Local variables
• Def: Variable declared inside function without static attribute
• Each stack frame contains one instance of each local variable

• Local static variables
• Def: Variable declared inside function with the static attribute
• Virtual memory contains exactly one instance of any local static variable.

17

char **ptr; /* global var */

int main(){
long i;
pthread_t tid;
char *msgs[2] = {"Hello from foo",

"Hello from bar"};
ptr = msgs;
for (int i = 0; i < 2; i++)

pthread_create(&tid, NULL,
thread, (void *)i);

pthread_exit(NULL);
}

void *thread(void *vargp){
long myid = (long)vargp;
static int cnt = 0;

printf("[%ld]: %s (cnt=%d)\n",
myid, ptr[myid], ++cnt);

return NULL;
}

Mapping Variable Instances to Memory

18

Global var: 1 instance (ptr [data])

Local static var: 1 instance (cnt [data])

Local var: 2 instances (
myid.p0 [peer thread 0’s stack],
myid.p1 [peer thread 1’s stack]

)

Local vars: 1 instance (i.m, msgs.m)

char **ptr; /* global var */

int main(){
long i;
pthread_t tid;
char *msgs[2] = {"Hello from foo",

"Hello from bar"};
ptr = msgs;
for (int i = 0; i < 2; i++)

pthread_create(&tid, NULL,
thread, (void *)i);

pthread_exit(NULL);
}

void *thread(void *vargp){
long myid = (long)vargp;
static int cnt = 0;

printf("[%ld]: %s (cnt=%d)\n",
myid, ptr[myid], ++cnt);

return NULL;
}

Practice with Shared Variables

Which variables are
shared?
• ptr
• cnt
• i.main
• msgs.main
• myid.thread0
• myid.thread1

19

char **ptr; /* global var */

int main(){
long i;
pthread_t tid;
char *msgs[2] = {"Hello from foo",

"Hello from bar"};
ptr = msgs;
for (int i = 0; i < 2; i++)

pthread_create(&tid, NULL,
thread, (void *)i);

pthread_exit(NULL);
}

void *thread(void *vargp){
long myid = (long)vargp;
static int cnt = 0;

printf("[%ld]: %s (cnt=%d)\n",
myid, ptr[myid], ++cnt);

return NULL;
}

Practice with Shared Variables

Which variables are
shared?

• ptr
• cnt
• i.main
• msgs.main
• myid.thread0
• myid.thread1

20

A variable x is shared iff multiple threads
reference at least one instance of x.

Variable Referenced by Referenced by Referenced by
instance main thread? peer thread 0? peer thread 1?

ptr
cnt
i.main
msgs.main
myid.thread0
myid.thread1

yes yes yes
no yes yes
yes no no
yes yes yes
no yes no
no no yes

What can go wrong?

21

/* Global shared variable */
volatile long cnt = 0; /* Counter */

int main(int argc, char **argv){
long num_incs;
pthread_t tid1, tid2;

num_incs = atoi(argv[1]);
pthread_create(&tid1, NULL, thread, &num_incs);
pthread_create(&tid2, NULL, thread, &num_incs);
pthread_join(tid1, NULL);
pthread_join(tid2, NULL);

/* Check result */
if (cnt != (2 * num_incs))

printf("BOOM! cnt=%ld\n", cnt);
else

printf("OK cnt=%ld\n", cnt);
exit(0);

}

/* Thread routine */
void *thread(void *vargp){

long i, num_incs;
num_incs = *((long *)vargp);

for (i = 0; i < num_incs; i++){
cnt++;

}

return NULL;
}

linux> ./badcnt 10000
OK cnt=20000

linux> ./badcnt 10000
BOOM! cnt=13051

linux>

22

thread:
mov rcx, QWORD PTR [rdi]
test rcx, rcx
jle .L2
mov edx, 0

.L3:
mov rax, QWORD PTR cnt[rip]
add rax, 1
mov QWORD PTR cnt[rip], rax
add rdx, 1
cmp rcx, rdx
jne .L3

.L2:
mov eax, 0
ret

cnt:
.zero 8

/* Thread routine */
void *thread(void *vargp){

long i, num_incs;
num_incs = *((long *)vargp);

for (i = 0; i < num_incs; i++){
cnt++;

}

return NULL;
}

Load cnt
Increment register holding cnt
Store new value back to cnt

23

thread:
mov rcx, QWORD PTR [rdi]
test rcx, rcx
jle .L2
mov edx, 0

.L3:
mov rax, QWORD PTR cnt[rip]
add rax, 1
mov QWORD PTR cnt[rip], rax
add rdx, 1
cmp rcx, rdx
jne .L3

.L2:
mov eax, 0
ret

cnt:
.zero 8

/* Thread routine */
void *thread(void *vargp){

long i, num_incs;
num_incs = *((long *)vargp);

for (i = 0; i < num_incs; i++){
cnt++;

}

return NULL;
}

Load cnt
Increment register holding cnt
Store new value back to cnt

What happens if the thread is preempted in the middle?

Thread 1
1. Load cnt
2.
3.
4.
5. Increment register
6. Store cnt

Thread 2
1.
2. Load cnt
3. Increment register
4. Store cnt
5.
6.

Race conditions

• A race condition is a timing-dependent error involving shared state
• Whether the error occurs depends on thread schedule

• Program execution/schedule can be non-deterministic

• Compilers and processors can re-order instructions

24

A concrete example…

• You and your roommate share a refrigerator. Being good roommates, you
both try to make sure that the refrigerator is always stocked with milk.
• Liveness: if you are out of milk, someone buys milk
• Safety: you never have more than one quart of milk

Algorithm 1:

Look in fridge.
If out of milk:

go to store,
buy milk,
go home
put milk in fridge

Algorithm 1:

if (milk == 0) { // no milk
milk++; // buy milk

}

25

A problematic schedule

You
3:00 Look in fridge; out of milk

3:05 Leave for store

3:10 Arrive at store
3:15 Buy milk

3:20 Arrive home
3:21 Put milk in fridge

Your Roommate

3:10 Look in fridge; out of milk
3:15 Leave for store

3:20 Arrive at store
3:25 Buy milk

3:30 Arrive home

3:31 Put milk in fridge

Safety violation:
You have too much milk and it spoils 26

Solution 1: Leave a note

• You and your roommate share a refrigerator. Being good roommates,
you both try to make sure that the refrigerator is always stocked with
milk.

Algorithm 2:

if (milk == 0) { // no milk
if (note == 0) { // no note

note = 1; // leave note
milk++; // buy milk
note = 0; // remove note

}
}

27

Algorithm 2:

if (milk == 0) { // no milk
if (note == 0) { // no note

note = 1; // leave note
milk++; // buy milk
note = 0; // remove note

}
}

Solution 1: Leave a note

• You and your roommate share a refrigerator. Being good roommates,
you both try to make sure that the refrigerator is always stocked with
milk.

Algorithm 2:

if (milk == 0) { // no milk
if (note == 0) { // no note

note = 1; // leave note
milk++; // buy milk
note = 0; // remove note

}
}

28

Algorithm 2:

if (milk == 0) { // no milk
if (note == 0) { // no note

note = 1; // leave note
milk++; // buy milk
note = 0; // remove note

}
}

Safety violation: you've introduced a Heisenbug!

Solution 2: Leave note before check note

• You and your roommate share a refrigerator. Being good roommates,
you both try to make sure that the refrigerator is always stocked with
milk.

Algorithm 3:

note1 = 1
if (note2 == 0) {
if (milk == 0) {

milk++;
}

}
note1 = 0

29

Algorithm 3:

note2 = 1
if (note1 == 0) {
if (milk == 0) {

milk++;
}

}
note2 = 0

Solution 2: Leave note before check note

• You and your roommate share a refrigerator. Being good roommates,
you both try to make sure that the refrigerator is always stocked with
milk.

Algorithm 3:

note1 = 1
if (note2 == 0) {
if (milk == 0) {

milk++;
}

}
note1 = 0

30

Algorithm 3:

note2 = 1
if (note1 == 0) {
if (milk == 0) {

milk++;
}

}
note2 = 0

Liveness violation: No one buys milk

Solution 3: Keep checking for note

• You and your roommate share a refrigerator. Being good roommates,
you both try to make sure that the refrigerator is always stocked with
milk.

Algorithm 4:

note1 = 1
while (note2 == 1) {
;

}
if (milk == 0) {
milk++;

}
note1 = 0

31

Algorithm 4:

note2 = 1
while (note1 == 1) {
;

}
if (milk == 0) {
milk++;

}
note2 = 0

Solution 3: Keep checking for note

• You and your roommate share a refrigerator. Being good roommates,
you both try to make sure that the refrigerator is always stocked with
milk.

Algorithm 4:

note1 = 1
while (note2 == 1) {
;

}
if (milk == 0) {
milk++;

}
note1 = 0

32

Algorithm 4:

note2 = 1
while (note1 == 1) {
;

}
if (milk == 0) {
milk++;

}
note2 = 0

Liveness violation: You've introduced deadlock

Solution 4: Take turns

• You and your roommate share a refrigerator. Being good roommates,
you both try to make sure that the refrigerator is always stocked with
milk.

Algorithm 5:

note1 = 1
turn = 2
while (note2 == 1 and turn == 2){
;

}
if (milk == 0) {
milk++;

}
note1 = 0

33

Algorithm 5:

note2 = 1
turn = 2
while (note1 == 1 and turn == 2){
;

}
if (milk == 0) {
milk++;

}
note2 = 0

Solution 4: Take turns

• You and your roommate share a refrigerator. Being good roommates,
you both try to make sure that the refrigerator is always stocked with
milk.

Algorithm 5:

note1 = 1
turn = 2
while (note2 == 1 and turn == 2){
;

}
if (milk == 0) {
milk++;

}
note1 = 0

(probably) correct, but complicated and inefficient

34

Algorithm 5:

note2 = 1
turn = 2
while (note1 == 1 and turn == 2){
;

}
if (milk == 0) {
milk++;

}
note2 = 0

Locks

A lock (aka a mutex) is a synchronization primitive that provides mutual
exclusion. When one thread holds a lock, no other thread can hold it.

• A lock can be in one of two states: locked or unlocked
• A lock is initially unlocked

• Function acquire(&lock) waits until the lock is unlocked, then
atomically sets it to locked

• Function release(&lock) sets the lock to unlocked

35

Solution 5: use a lock

• You and your roommate share a refrigerator. Being good roommates,
you both try to make sure that the refrigerator is always stocked with
milk.

Algorithm 6:

acquire(&milk_lock)
if (milk == 0) {
milk++;

}
release(&milk_lock)

36

Algorithm 6:

acquire(&milk_lock)
if (milk == 0) {
milk++;

}
release(&milk_lock)

Solution 5: use a lock

• You and your roommate share a refrigerator. Being good roommates,
you both try to make sure that the refrigerator is always stocked with
milk.

Algorithm 6:

acquire(&milk_lock)
if (milk == 0) {
milk++;

}
release(&milk_lock)

Simpler and Correct!

37

Algorithm 6:

acquire(&milk_lock)
if (milk == 0) {
milk++;

}
release(&milk_lock)

Atomic Operations

• Solution: hardware primitives to support synchronization

• A machine instruction that (atomically!) reads and updates a memory
location

• Example: xchg DEST, SRC
• one instruction
• semantics: TEMP ← DEST; DEST ← SRC; SRC ← TEMP;

38

Spinlocks

acquire:

mov eax, 1 ; Set EAX to 1

xchg [rdi], eax ; Atomically swap EAX w/ lock val

test eax, eax ; Check if EAX is 0 (lock unlocked)

jnz acquire ; If was locked, loop

ret ; Lock has been acquired, return

release:

xor eax, eax ; Set EAX to 0

xchg [rdi], eax ; Atomically swap EAX w/ lock val

ret ; Lock has been released, return

39

Programming with Locks (Pthreads)

• Defines lock type pthread_mutex_t

• Functions to create/destroy locks:
• int pthread_mutex_init(&lock, attr);
• int pthread_mutex_destroy(&lock);

• Functions to acquire/release lock:
• int pthread_mutex_lock(&lock);
• int pthread_mutex_unlock(&lock);

40

Practice with Locks

Modify this example to
guarantee correctness

41

/* Global shared variable */
volatile long cnt = 0; /* Counter */

int main(int argc, char **argv){
long num_incs;
pthread_t tid1, tid2;

num_incs = atoi(argv[1]);
pthread_create(&tid1, NULL, thread, &num_incs);
pthread_create(&tid2, NULL, thread, &num_incs);
pthread_join(tid1, NULL);
pthread_join(tid2, NULL);

/* Check result */
if (cnt != (2 * num_incs))

printf("BOOM! cnt=%ld\n", cnt);
else

printf("OK cnt=%ld\n", cnt);
exit(0);

}

/* Thread routine */
void *thread(void *vargp){

long i, num_incs;
num_incs = *((long *)vargp);

for (i = 0; i < num_incs; i++){
cnt++;

}

return NULL;
}

Practice with Locks

Modify this example to
guarantee correctness

42

/* Global shared variable */
volatile long cnt = 0; /* Counter */

int main(int argc, char **argv){
long num_incs;
pthread_t tid1, tid2;

num_incs = atoi(argv[1]);
pthread_create(&tid1, NULL, thread, &num_incs);
pthread_create(&tid2, NULL, thread, &num_incs);
pthread_join(tid1, NULL);
pthread_join(tid2, NULL);

/* Check result */
if (cnt != (2 * num_incs))

printf("BOOM! cnt=%ld\n", cnt);
else

printf("OK cnt=%ld\n", cnt);
exit(0);

}

/* Thread routine */
void *thread(void *vargp){

long i, num_incs;
num_incs = *((long *)vargp);

for (i = 0; i < num_incs; i++){
cnt++;

}

return NULL;
}

Acquire lock

Release lock

Create lock

Problems with Locks

1. Locks are slow
• Threads that fail to acquire a lock on the first attempt must "spin", which

wastes CPU cycles
• Threads get scheduled and de-scheduled while the lock is still locked

2. Using locks correctly is (surprisingly) hard
• Hard to ensure all race conditions are eliminated
• Easy to introduce synchronization bugs (deadlock, livelock)
• Gets much harder when you have multiple needed resources

43

Better Synchronization Primitives

• Semaphores
• Stateful synchronization primitive

• Condition variables
• Event-based synchronization primitive

• These are the topic of our next class period

44

