Synchronization Primitives

mutex,



Race Conditions

int data = 0;

vold *threadl (void* arg) {
int a = data;
at+;
data = a;
return NULL;

vold *thread2 (void *arg) {
int b = data;
b--;
data = b;
return NULL;

int main () {

What is the final value of data if the threads run without preemption?

// Create and run both threads




Race Conditions

int data = 0;

vold *threadl (void* arg) {

int a = data;
at+;
data = a;

return NULL;

vold *thread2 (void *arg) {
int b = data;
b--;
data = b;
return NULL;

int main () {

What is the final value of data if the threads run without preemption?

Step threadl thread2 data
@ 0
1 int az; data; 0
2 at+; @ 0
2
3 int b = data; ( 0)
4 b--; Q 0
5 daté’: a;
6 data = b; -1
N—"

// Create and run both threads

The final value for data could be: 1, O, or -1.

AN A




Race Conditions
oo~ hock

vold *threadl (void* arg) {
int a = data;
QTR
data = ay

\ return NULL;

v01d *thread2(void *arqg) A

CNQ}XP) int b = data;

b--;
data = b;

\e9%2¥return NULL;

int main () {

What is the final value of data if the threads run without preemption?

How could we fix this program?

Step threadl thread2 data

0
1 int a = datay; 0
2 at+; 0
3 int b = data; 0
4 b--; 0
5 data = a; 1
6 data = b; -1

The final value for data could be: 1, O, or -1.

// Create and run both threads




Problems with Locks

* Problem 1: correct synchronization with locks is difficult

* Problem 2: locks are slow

* Threads that fail to acquire a lock on the first attempt must "spin", which
wastes CPU cycles
* Replace no-op with yield ()
* Threads get scheduled and de-scheduled while the lock is still locked
* Need a better synchronization primitive



Semaphores (semaphore.h)

Semaphoresare stateful synchronization primitives with:
e aval n—negativeinteger),
* alock\ang

* agueue.

* int sem 1nit(sem t *sem, 1int pshared, unsigned 1nt value);

* int sem wailt(sem t *sem);

* If sis nonzero, the P decrements s and returns immediately. If s is zero, then adds the thread to
queue(s); after restarting, the P operation decrements s and returns.

* int sem post(sem t *sem);

* Increments s by 1. If there are any threads in queue(s), then V restarts exactly one of these
threads, which then completes the P operation.

sem init (&sem name, 0, 10);



Semantics of wait and post

O
* sem walt

* block (suspen'ﬂ//thread) until value n >0
e when n >0, decrement n by 1

* sem post
* increment value n by 1
* resume a thread waiting on s (if any)

O

sem walt (sem t *s)
while (s->n == 0)
s->n —-= 1

{
{

J

sem post(sem t *s) {
s->n += 1

J




Binary Semaphore (aka mutex)

* A binary semaphore is a semaphore whose value is always 0 or 1

* Used for mutual exclusion---it’s a more efficient lock!

sem t s
sem 1nit(&s, 0, 1)

T1 T2

sem walt (&s) sem walt (&s)
CriticalSection () CriticalSection ()
sem post (&s) sem post (&s)




Example: Shared counter

volatile long cnt = 0;

/* Thread routine */
vold *thread(void *vargp)

{

long num iters = *((long *)vargp):;
for (long 1 = 0; 1 < num iters; i++) {
cnt++;

}

return NULL;

H (head):

code before the critical section

L (load): loading a critical value
U (update): updating a critical value
S (store): store a critical value
T (tail): code after the critical section
Thread 2

T

Sz

U,

L,

H

2 ‘ A X ~ Thread 1
Hl Ll Ul Sl Tl



Example: Shared counter

volatile long cnt = 0;

/* Thread routine */
vold *thread(void *vargp)

{

long num iters = *((long *)vargp):;
for (long 1 = 0; 1 < num iters; i++) {
cnt++;

}

return NULL;

Critical
section
wrt cnt

H (head): code before the critical section

L (load): loading a critical value
U (update): updating a critical value
S (store): store a critical value
T (tail): code after the critical section
Thread 2 Safe trajectory
T
( ] [ ] —-__-: ------ [ ] . [ ] [ ]
S, : i
< U, i Unsafe Region i
L,
\ ® [ ] [ ] [ ] [ ] [ ]
H
2 ‘ A X ~ Thread 1
Hl g Ll Ul Sl/ Tl

Y

Critical section wrt cnt
10



H (head): code before the critical section
L (load): loading a critical value
U (update): updating a critical value

Example: Shared counter S(store):  store a criical value

T (tail): code after the critical section
volatile long cnt = 0;
Thread 2 Safe trajectory
® ° ° c_b‘
/* Thread routine */ T
void *thread(void *vargp) 1 > .. )|
{ 5 | :
long num iters = *((long *)vargp):; Critical i I e )
, , . _ section < U | Unsafe Region | I
for (long 1 = 0; 1 < num iters; 1++) { wrt cnt 'i : I
L
cnt++; \.
Ap [ ] [ ] [ [
H
) i Thread 1
> > P . .
return NULL; Hi (L \91 S, T
J " :
Critical section wrt cnt

11



) s H (head): code before the critical section
What is the semaphore value n at each point: L (load): loading a critical value

U (update): updating a critical value

Example: Shared counter S(store):  store a criical value

T (tail): code after the critical section
Thread 2
volatile long cnt = 0;
sem_t S; p [ ] [ ] [ ] [ ] [ ] [ ] [ ]
sem init(&s, 0, 1); T2
. P(s)
/* Thread routine */ | . . . . . . .
vold *thread(void *vargp) s | e ,
{ 2 ! E
long num iters = *((long *)vargp):; ' * ) i ‘ ‘ :
U, i E
for (long 1 = 0; i < num iters; 1i++) { i * * i ° ° E * * *
sem wait(&s); L, ool
ont++ sem walt(sem t *s){ s . . . . . . .
sem_post (&s) ; while(s->n == 0){} W(s)
} S_>n -= l p [ ] [ ] [ ] [ ] [ ] [ ] [ ]
} H,
return NULL; 1 . . . . . . .
} sem post (sem t *s) { Hy W(s) L U, S; P(s) T,
s=->n += 1
} Thread 1 12




) s H (head): code before the critical section
What is the semaphore value n at each point: L (load): loading a critical value

U (update): updating a critical value

Example: Shared counter S(store):  store a criical value

T (tail): code after the critical section
Thread 2
volatile long cnt = 0; 1 .1 .0 o L0 o 1 1
sem t s;
sem init(&s, 0, 1); T
— Dl [ ] 1 [ ] O 00 [ ] 0 [ ] 0 [ ] 1 [ ] 1
P(s
/* Thread routine */ ( )'o L0, . . . L0 L0
vold *thread(void *vargp) S N T S 1 __ -1
2 : .
{ DO ° 0 ° 1: °_1 ° _1 : 1e ° 0 ° 0
long num iters = *((long *)vargp):; U : E
2o 0 : ] 0 0
for (long 1 = 0; 1 < num iters; i++) { i ° -1 el °-1 : 1e ° *
sem wait(&s) ; L, ST 1—--' .
cnt++ sem wait (sem t *s) { L0 .0 oS e e e 0 L0
sem_post (&s) ; while(s->n == 0){} W(s)
} s->n —-= 1 | 1 Jr o ,0 o0 WO L0 L1 L
} H,
return NULL; 1 ! .0 0 .0 .0 .1 1
} sem post (sem t *s) { Hy W(s) L U, S; P(s) T,
s=->n += 1
} Thread 1 13




hat is th o | N ooint? H (head): code before the critical section
What is the semaphore value n at each point: L (load): loading a critical value

U (update): updating a critical value

Example: Shared counter S(store):  store a criical value

T (tail): code after the critical section
. Thread 2
volatile long cnt = 0; 1 .1 .0 o L0 o 1 1
sem t s;
sem init(&s, 0, 1); T
— ll [ ] 1 [ ] O [ ] O [ ] 0 [ ] 0 [ ] 1 [ ] 1
P(s) Forbidden region
/* Thread routine */ 0 Lol . . . . LO 0
vold *thread(void *vargp) S N T S 1 __ -1
2 : .
{ DO ° 0 ° 1: °_1 ° _1 : 1e ° 0 ° 0
long num iters = *((long *)vargp):; ! ST
U, :Unsafe Region |
0 0 . ! 0 0
for (long 1 = 0; 1 < num iters; 1++) { i * -1 el °-1 : 1e * .
sem wait(&s); L, R
cnt++ sem wait (sem t *s) { o Lo 1t - e 0 L0
sem_post (&s) ; while(s->n == 0){} W(s)
} s—-—>n —-= 1 '1 .1 .0 .0 .0 .0 .1 .1
} H,
return NULL; 1 ! .0 0 .0 .0 .1 1
} sem post (sem t *s) { Hy W(s) L U, S; P(s) T,
s=->n += 1
) Thread 1 14




Example: Synchronization Barrier

* With data parallel programming, a
computation proceeds in parallel,
with each thread operating on a
different section of the data.

* Results can be safely combined once
all threads end.

* MapReduce is an example of this!

* To do this safely, we need a way to
check whether all threads are done.

volatile int results = 0;
volatile int done count = 0;

sem t done count semaphore;
sem 1init (&done count semaphore, 0, 1);

sem t barrier;
sem init (&barrier, 0, 0);

void *thread(void *args) {
parallel computation(args);

sem walt (&done count semaphore);
done count++;
sem post (&done count semaphore) ;

1f (done count == n) {
sem post (&barrier);

}

sem walt (&barrier);
sem post (&barrier);
use results();




Counting Semaphores

* A semaphore with a value that goes above 1 is called a counting
semaphore

* A more flexible primitive for mediating access to shared resources



Example: Bounded Buffers

Nobody waits until the queue is empty

—

“fini_té cpacity '(_e.g., 26Ioes)
implemented as a queue

Threads A: produce loaves of bread and put Threads B: consume loaves by taking them off
them in the queue the queue 17



Example: Bounded Buffers

Nobody waits until the queue is empty

I SRR I TR BT - ad
finite capacity (e.g., 20 loaves)
implemented as a queue

Separation of concerns:
1. How do you implement a bounded (circular) buffer?

2. How do you synchronize concurrent access to a bounded buffer?

—
Threads A: produce loaves of bread and put Threads B: consume loaves by taking them off

them in the queue the queue 18



Example: Bounded Buffers

typedef struct {
int *b;
int n;
int front;
int rear;
} bbuf t

0

1

2

3

4

5

3

2

4

1

Values wrap around!!

// ptr to buffer containing the queue

// length of array
// index of first element,
(index of last elem)+1

//

(max # slots)

o

(¢}

0 <=
n,

front < n
0 <= rear < n

19



Example: Bounded Buffers

(n=06)

0 1 2 3 4 5

b— 3 24| 1
I I
rear front

typedef struct {
int *b;
int n;
int front;
int rear;
} bbuf t

Values wrap around!!

// ptr to buffer containing the queue

// length of array
// index of first element,
(index of last elem)+1

//

o

(¢}

(max # slots)

0 <= front < n

n,

0

<= rear < n

20



Example: Bounded Buffers

Values wrap around!!

n, 0 <= rear < n

0 1 2 3 4 5 (n=6)
b— 3 24| 1
rear front
typedef struct {
int *b; // ptr to buffer containing the queue
int n; // length of array (max # slots)
int front; // index of first element, 0 <= front < n
int rear; // (index of last elem)+1l %
} bbuf t

void init (bbuf t * ptr, int n) {

}

ptr->b = malloc(n*sizeof (int));
ptr->n = n;

ptr->front = 0;

ptr->rear = 0;

21



Example: Bounded Buffers

0 1 2 3 4 5 (n=6)

b— 3 24| 1 Values wrap around!!
I I
rear front
typedef struct {
int *b; // ptr to buffer containing the queue
int n; // length of array (max # slots)
int front; // index of first element, 0 <= front < n
int rear; // (index of last elem)+l % n, 0 <= rear < n
} bbuf t
void put (bbuf t * ptr, int wval) {
ptr->b[ptr->rear] = val;
void init (bbuf t * ptr, int n) { ptr->rear = ((ptr->rear)+1)% (ptr->n);

ptr->b = malloc(n*sizeof (int)); }

ptr->n = n;
ptr->front = 0;
ptr->rear = 0;




Example: Bounded Buffers

0 1 2 3 4 5 (n=6)

b— 3|7 2141 Values wrap around!!
I
rear front
typedef struct {
int *b; // ptr to buffer containing the queue
int n; // length of array (max # slots)
int front; // index of first element, 0 <= front < n
int rear; // (index of last elem)+l % n, 0 <= rear < n
} bbuf t
void put (bbuf t * ptr, int wval) {
ptr->b[ptr->rear] = val;
void init (bbuf t * ptr, int n) { ptr->rear = ((ptr->rear)+1)% (ptr->n);

ptr->b = malloc(n*sizeof (int)); }

ptr->n = n;
ptr->front = 0;
ptr->rear = 0;




Example: Bounded Buffers

b—— 3|7 2141

typedef struct {
int *b;
int n;
int front;
int rear;
} bbuf t

0 1 2 3 4 5 (n=6)

T

rear front

// ptr to buffer containing the queue
// length of array (max # slots)
// index of first element, 0 <= front

Values wrap around!!

< n

// (index of last elem)+l % n, 0 <= rear < n

ptr->b[ptr->rear]

void init (bbuf t * ptr, int n) {
ptr->b = malloc(n*sizeof (int)); }
ptr->n = n;
ptr->front = 0;
ptr->rear = 0;

void put (bbuf t * ptr, int wval) {

ptr->rear = ((ptr->rear)+1)%(ptr->n);

= val;

o

return val;

int get (bbuf t * ptr) {
int val = ptr->b[ptr->front];
ptr->front = ((ptr->front)+1) % (ptr->n);

24



Example: Bounded Buffers

b—— 3|7 4| 1

typedef struct {
int *b;
int n;
int front;
int rear;
} bbuf t

0 1 2 3 4 5 (n=6)

I 1

rear front

// ptr to buffer containing the queue
// length of array (max # slots)
// index of first element, 0 <= front

Values wrap around!!

< n

// (index of last elem)+l % n, 0 <= rear < n

ptr->b[ptr->rear]

void init (bbuf t * ptr, int n) {
ptr->b = malloc(n*sizeof (int)); }
ptr->n = n;
ptr->front = 0;
ptr->rear = 0;

void put (bbuf t * ptr, int wval) {

ptr->rear = ((ptr->rear)+1)%(ptr->n);

= val;

o

return val;

int get (bbuf t * ptr) {
int val = ptr->b[ptr->front];
ptr->front = ((ptr->front)+1) % (ptr->n);

25



Example: Bounded Buffers

0 1 2 3 4 5 (n=6)
b— 3|7 4|1
I I
rear front

typedef struct {

What can go wrong if

multiple threads are using
the buffer?

Values wrap around!!

0 <= rear < n

int *b; // ptr to buffer containing the queue
int n; // length of array (max # slots)
int front; // index of first element, 0 <= front < n
int rear; // (index of last elem)+1 % n,
} bbuf t

void init (bbuf t * ptr,

}

int n) {
ptr->b = malloc(n*sizeof (int)); }

ptr->rear =

void put (bbuf t * ptr,
ptr->b[ptr->rear]
((ptr->rear)+1) % (ptr->n);

int wval) {
= val;

ptr->n = n;

ptr->front = 0;

ptr->rear = 0; int val =

ptr->front =

return val;

int get (bbuf t * ptr) {
ptr->b[ptr->front];
((ptr—->front) +1) 3 (ptr—->n) ;

26




Example: Bounded Buffers

0 1 2 3 4 5 (n=6)
b— 3|7 4|1
I I
rear front

typedef struct {

What can go wrong if

multiple threads are using
the buffer?

Values wrap around!!

0 <= rear < n

int *b; // ptr to buffer containing the queue
int n; // length of array (max # slots)
int front; // index of first element, 0 <= front < n
int rear; // (index of last elem)+1 % n,
} bbuf t

void init (bbuf t * ptr,

}

int n) {
ptr->b = malloc(n*sizeof (int)); }

ptr->rear =

void put (bbuf t * ptr,
ptr->b[ptr->rear]
((ptr->rear)+1) % (ptr->n);

int wval) {
= val;

ptr->n = n;

ptr->front = 0;

ptr->rear = 0; int val =

ptr->front =

return val;

int get (bbuf t * ptr) {
ptr->b[ptr->front];
((ptr->front)+1) % (ptr->n) ;

27




Example: Bounded Buffers

What can go wrong if

multiple threads are using
the buffer?

0 1 2 3 4 5 (n=6)
b— 3|7 411 Values wrap around!!
rear front Note: we can do a bit better than this if we

consider that put and get operate on different
sections of the buffer.

typedef struct {

int *b; // ptr to buffer containing the queue

(max # slots)
0 <= front < n
n, 0 <= rear < n

// length of array
int front; // index of first element,

int ree~- /[ lindax of last elem)+1l %
} bbuf t Sem t mutex;

int n;

int val sem wait (& (ptr->slots));

val;

void put (bbuf t * ptr,
ptr->b[ptr->rear] =

<ptr—>n);|

void init (bbuf t * ptr, int n) { ptr->rear = ((ptr->rear)+1)5%
ptr->b = malloc(n*sizeof (int)); } sem post (& (ptr->mutex)) ;
ptr->n = ny; — |
ptr->front = 0; int get(bbuf_t * ptr){ sem wait (& (ptr->slots));
ptr->rear = 0; int val = N

ptr->b[ptr->front],
} ptr->front = ((ptr—>front)+1)%(ptr—>n);|
Sem_init (&mutex, 0, 1); return val; Sem_post (& (ptr—>mutex) ) ;

} |




Practice with multiple Readers/Writers

e Consider a collection of
concurrent threads that have
access to a shared object

e Some threads are readers,
some threads are writers

e an unlimited number of
readers can access the object
at same time

e a writer must have exclusive
access to the object

// global variables
int num readers = 0;

vold init () {

int reader (void *shared) {

num readers++;

int x = read(shared);

num readers--;

return x

volid writer (void *shared,

write (shared, wval);

int wval) {

29




Practice with multiple Readers/Writers

* Consider a collection of

concurrent threads that have

access to a shared object

e Some threads are readers,

some threads are writers
* an unlimited number of

readers can access the object

at same time

* g writer must have exclusive

access to the object

// global variables
int num readers = 0;
sem_t num lock;
sem_t ojb lock;

vold init () {
sem init (&num lock, 0, 1)
sem 1init (&ojb lock, 0, 1)

int reader (void *shared) {
sem wait (&num lock);
num readers++;
if (num readers == 1)

sem wailt (&obj locg\\\

sem_post(&num_lock)

int x =
sem wailt (&num lock);
num readers--;

if (num readers == 0)

sem post (&obj lock);

sem post (&num lock);

return x

read (shared) ;

sSem

volid writer (void *shared, int wval) {
~wailt (&ojb lock);
write (shared, wval);
sem

post (&ojb lock);

\

This thread is the first reader.

This thread was the last reader.

30




Limitations of Semaphores

* Semaphores are a very spartan mechanism
* They are simple, and have few features
* More designed for proofs than synchronization

* They lack many practical synchronization features
* |tis easy to deadlock with semaphores
* One cannot check the lock without blocking
* They are flat out hard to use
e POSIX doesn’t even include an implementation

 Strange interactions with OS scheduling (priority inheritance)



Condition Variables

* A condition variable (CV) is a stateless synchronization primitive that
is used in combination with locks (mutexes)

* int pthread cond init (pthread cond t *cond, const pthread condattr t *attr);

* int pthread cond wait (pthread cond t *cond, pthread mutex t *mutex);
* atomically releases the lock, suspends execution of the calling thread, and places that thread on cv's waitlist
» after the thread is awoken, it re-acquires the lock before returning

* int pthread cond signal (pthread cond t *cond);
* takes one thread off CV waitlist and marks it as eligible to run (No-op if waitlist is empty.)

* int pthread cond broadcast (pthread cond t *cond);
* takes all threads off CV waitlist and marks them all as eligible to run (No-op if waitlist is empty.)



Using Condition Variables

* Add a lock. Each shared value needs a lock to enforce mutually exclusive
access to the shared value.

* Add code to acquire and release the lock. All code access the shared value
must hold the objects lock.

* |dentify and add condition variables. A good rule of thumb is to add a
condition variable for each situation in a function might need to wait.

e Ad Ioops o wait. Threads might not be scheduled immediately after they
are to run. Even if a condition was true when signal/broadcast was
called, lt might not be true when a thread resumes execution.




Example: Synchronization Barrier (Semaphore)

volatile int results = 0;
* With data parallel programming, a veratiie int done comnt = s
computation proceeds in parallel, sem_t done_count_semaphore;
W|th eaCh thread Operating on 3 sem 1init (&done count semaphore, 0, 1);
different section of the data. sem_t barrier;
sem init (&barrier, 0, 0);
void *thread(void *args) {
* Results can be safely combined once parallel computation(args);
a“ th readS end. sem walt (&done count semaphore);
° : ; done count++;
MapReduce is an example of this! sem Bost (sdone count semaphore) ;
1f (done count == n) {
* To do this safely, we need a way to sem_post (sbarrier);

check whether all threads are done. }

sem walt (&barrier);
sem post (&barrier);
use results();




Example: Synchronization Barrier (CV)

* With data parallel programming, a
computation proceeds in parallel,
with each thread operating on a
different section of the data.

* Results can be safely combined once
all threads end.

* MapReduce is an example of this!

* To do this safely, we need a way to
check whether all threads are done.

volatile int results = 0;
volatile int done count = 0;

sem t done count semaphore;
sem 1init (&done count semaphore, 0, 1);

sem t barrier;
sem init (&barrier, 0, 0);

void *thread(void *args) {
parallel computation(args);

sem wailt (&done count semaphore);
done count++;
sem post (&done count semaphore);

i1f (done count == n) {
sem post (&barrier);

}

sem wait (&barrier);
sem post (&barrier);
use results();




Example: Synchronization Barrier (CV)

volatile int results = 0;
volatile int done count = 0;

* With data parallel programming, a
computation proceeds in parallel,
with each thread operating on a
different section of the data.

void *thread(void *args) {

* Results can be safely combined once parallel computation(args);
all threads end.

* MapReduce is an example of this!

done count++;

* To do this safely, we need a way to
check whether all threads are done.

use results();




Example: Synchronization Barrier (CV)

* With data parallel programming, a
computation proceeds in parallel,
with each thread operating on a
different section of the data.

* Results can be safely combined once
all threads end.

* MapReduce is an example of this!

* To do this safely, we need a way to
check whether all threads are done.

volatile int results = 0;
volatile int done count = 0;

pthread mutex_ t lock =
PTHREAD MUTEX INITIALIZER;

pthread cond t all done =
PTHREAD COND_ INITIALIZER;

void *thread(void *args) {
parallel computation(args);

pthread mutex lock(&lock) ;
done count++;

if (done_count < n){
pthread cond wait(&all done, &lock);
} else {

pthread cond broadcast(&all done);
}

pthread mutex unlock (&lock) ;
use results();




Practice with multiple Readers/Writers (Sema)

* Consider a collection of

concurrent threads that have

access to a shared object

e Some threads are readers,

some threads are writers
* an unlimited number of

readers can access the object

at same time

* g writer must have exclusive

access to the object

// global variables
int num readers = 0;
sem_t num lock;
sem_t ojb lock;

void init () {
sem init (&num lock, 0, 1);
sem init (&ojb lock, 0, 1);

int reader (void *shared) {
sem wait (&num lock);
num readers++;
if (num readers == 1)

sem wailt (&obj locg\\\

sem_post(&num_lock)

int x = read(shared);

sem wailt (&num lock);
num readers--;
if (num readers == 0)

sem post (&obj lock);

sem post (&num lock);

return x

volid writer (void *shared, int wval) {
sem wait (&ojb lock);
write (shared, wval);
sem post (&ojb lock);

This thread is the first reader.

\ This thread was the last reader.
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Practice with multiple Readers/Writers (CV)

// global variables void init () {
. . int num readers = 0;
e Consider a collection of
concurrent threads that have }
access to a shared object
int reader (void *shared) { vold writer (void *shared, int wval) {
num_readers++; write (shared, val);
 Some threads are readers, |
some threads are writers
* an unlimited number of int % - road(shared):

readers can access the object
at same time

num readers--; :
* a writer must have exclusive program using
access to the object condition variables.

Implement this

return x

39




Practice with multiple Readers/Writers (CV)

e Consider a collection of
concurrent threads that have
access to a shared object

// global variables

int num readers = 0;

int num writers = 0O;
pthread mutex t lock;
pthread cond t readable;
pthread:cond:t writeable;

volid init () {
lock = PTHREAD_MUTEX_INITIALIZER;

readable = PTHREAD COND INITIALIZER;
writeable = PTHREAD COND INITIALIZER;

e Some threads are readers,
some threads are writers

e an unlimited number of
readers can access the object
at same time

e a writer must have exclusive
access to the object

int reader (void *shared) {

pthread mutex lock(&lock);
while (num writers > 0)

prazead cond WAl (&readable, &lock);
num readers++;

pthread mutex unlock (&lock);

int x = read(shared);

pthread mutex lock(&lock);
num readers--;
if (num readers == 0)
pthread cond signal (writeable);

pthread mutex unlock (&lock);
return x

void writer (void *shared, int wval) {

pthread mutex lock(&lock);
while (num readers > 0)
pthread cond wait (writeable,
num writers = 1;
pthread mutex unlock (&lock);

write (shared, wval);

pthread mutex lock(&lock);

num writers = 0;

pthread cond signal (writeable);
pthread cond broadcast (readable);
pthread mutex unlock (&lock);
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&lock) ;




Linux Example (General Pattern for any OS)

pthread mutex t lock;

pthread cond t cv; Condition variables are synchronization primitives that enable threads to wait until a particular condition occurs.

void PerformOperationOnSharedData()

{
pthread mutex lock(&lock);

Verify that the current lock request is Condition variables are subject to spurious wakeups (those not associated with an explicit wake) and
compatible with the existing owners. stolen wakeups (another thread manages to run before the woken thread). Therefore, you should
while (TestPredicate() == FALSE) recheck a predicate (typically in a while loop) after a sleep operation returns.

pthread cond wait(& cv, &lock); After a thread is woken, it re-acquires the lock it
released when the thread entered the sleeping state.

Atomically release a lock and enter the sleeping state.
ChangeSharedData();

The data can be changed safely because we own the critical section

pthread mutex unlock(&lock);

// If necessary, signal the condition variable
} You can wake other threads using pthread cond signal or
pthread cond broadcast eitherinside or outside the lock associated with the
condition variable. It is usually better to release the lock before waking other threads to
reduce the number of context switches.
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Windows Example (General Pattern for any OS) Microsoft: typical usage pattern of condition variables

CRITICAL SECTION CritSection;

CONDITION VARIABLE Conditionvar; Condition variables are synchronization primitives that

enable threads to wait until a particular condition occurs.

void PerformOperationOnSharedData ()

{

EnterCriticalSection(&CritSection);

Verify that the current lock request is compatible

with the existing owners.
while (TestPredicate () == FALSE)

Condition variables are subject to spurious wakeups (those not associated with an explicit wake) and
stolen wakeups (another thread manages to run before the woken thread). Therefore, you should
recheck a predicate (typically in a while loop) after a sleep operation returns.

SleepConditionVariableCS (&ConditionVar, &CritSection, INFINITE);

Atomically release a lock and enter the sleeping state. After a thread is woken, it re-acquires the lock it
released when the thread entered the sleeping state.

ChangeSharedData () ;

The data can be changed safely because we own the critical section

LeaveCriticalSection (&CritSection);

// If necessary, signal the condition variable

You can wake other threads using WakeConditionVariable or WakeAllConditionVariable
either inside or outside the lock associated with the condition variable. It is usually better
to release the lock before waking other threads to reduce the number of context switches.
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https://learn.microsoft.com/en-us/windows/win32/sync/condition-variables
https://learn.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-wakeconditionvariable
https://learn.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-wakeallconditionvariable

Summary

e Shared resources (often) need protection

* Mutexes (locks) are an inefficient way to protect shared resources
* They “spin” and wait instead of blocking

* Semaphores add blocking to mutexes, but they are still difficult to use

e Condition variables are more ergonomic and flexible



