
Virtual Memory



Drawing: Processes

• Take three minutes to draw multiple “processes”

• Some reminders
• Program vs process
• Process control blocks
• Context switching
• Process life cycle
• fork/execve/waitpid/exit
• Process graphs
• Scheduling (round robin; multi-level)

2



3



Virtual Memory

• Abstraction of physical memory
• Give appearance of a large, consistent amount of memory
• Handle loading from secondary (disk) storage

• A page table maps between a virtual address and physical address
• A memory management unit (MMU) implements the translation in 

hardware

• Closely connected with concurrency and multiple processes
• Managed by both the CPU and the OS

4



Abstractions

5

CPU Memory



Abstractions

6

CPU Memory
Address

Data



Abstractions

7

CPU Memory
Address

Data

ALU

Registers



Abstractions

8

CPU Memory
Address

Data

ALU

Registers

Stack

Heap

Data

Code



Abstractions

9

CPU Memory
Address

Data

ALU

Registers

Stack

Heap

Data

Code

FPU

rps, rpi, rflags



Abstractions

10

CPU Memory
Address

Data

ALU

Registers

Stack

Heap

Data

Code

FPU

rps, rpi, rflags

L1 Cache

L2 Cache

L3 Cache



Abstractions

11

Core Memory
Address

Data

ALU

Registers

Stack

Heap

Data

Code

FPU

rps, rpi, rflags

L1 Cache

L2 Cache

L3 Cache



Abstractions

12

Core Memory
Address

Data

ALU

Registers

Stack

Heap

Data

Code

FPU

rps, rpi, rflags

L1 Cache

L2 Cache

L3 Cache

MMU



Abstractions

13

Core

Physical Memory

Address

Data

ALU

Registers

Stack

Heap
Data
Code

FPU

rps, rpi, rflags

L1 Cache

L2 Cache

L3 Cache

MMU

TLB



Abstractions

14

Core

Physical Memory

Address

Data

ALU

Registers

Stack

Heap
Data
Code

FPU

rps, rpi, rflags

L1 Cache

L2 Cache

L3 Cache

MMU

TLB



Abstractions

15

Core

Physical Memory

Address

Data

ALU

Registers

FPU

rps, rpi, rflags

L1 Cache

L2 Cache

L3 Cache

MMU

TLB



Abstractions

16

Core

Physical Memory

Address

Data

ALU

Registers

FPU

rps, rpi, rflags

L1 Cache

L2 Cache

L3 Cache

SSD

MMU

TLB



Abstractions

17

Core

Physical Memory

Address

Data

ALU

Registers

FPU

rps, rpi, rflags

L1 Cache

L2 Cache

L3 Cache

SSD

MMU

TLB



Abstractions

18

Core

Physical Memory

Address

Data

ALU

Registers

FPU

rps, rpi, rflags

L1 Cache

L2 Cache

L3 Cache

SSD

MMU

TLB



Memory

Virtual
• Not a real thing (no chip)
• Terabytes
• Supported by OS and CPU
• Every process things it owns all 

physical memory
• MMU on CPU translates the 

virtual address into physical

Physical
• RAM
• Gigabytes
• Isolation handled by OS

19Courtesy of Wikipedia



20

Wikipedia



21

0x0000 7fff ffff ffff

0x0000 0000 0000 0000

0x0000 8000 0000 0000

https://www.kernel.org/doc/html/latest/x86/x86_64/mm.html

0xffff 7fff ffff ffff
0xffff 8000 0000 0000

0xffff ffff ffff ffff

User Address Space

0x0000 0000 0000 1000
Reserved (Protection)

Unused Address Space

Kernel Address Space

The first “page” is often reserved to prevent null-
reference errors.

char *str = <zero for some reason>;
str[15] = ‘a’;

48-Bit Virtual Address Space

All user-processes share this portion of the address 
space. All
• Stacks
• Heaps
• Data
• Code

128 TB

How many of you have a system with 128 TB?
• Some system support 57-bit virtual addresses, 

which would 64 PB…

128 TB How many of you have a system with 128 TB?

Configurable

https://www.kernel.org/doc/html/latest/x86/x86_64/mm.html


Another Form of Caching

• Similar in purpose to L1, L2, L3, etc. cache
• But now stored in RAM instead of on CPU

• Before: data block
• Now: page

• Before: evicting/updating (or swapping)
• Now: paging

22



Address Translation

23

CPU Memory
Address

Address

ALU

Registers

Stack

Heap

Data

Code



Virtual Addressing

24

Core

Physical Memory

Physical Address

Data

ALU

Registers

FPU

rps, rpi, rflags

L1 Cache

L2 Cache

L3 Cache

SSD

MMU

TLB

(Virtual Address)



Virtual Addressing

25

Core

Physical Memory

Physical Address

Data

ALURegisters FPUrps, rpi, 
rflags

Cache

SSD

MMU

TLB

Virtual
Address

Physical
Address

Exception



Possibilities

Let’s look at some good and bad possibilities

• Base-and-bound

• Segmentation

• Paging

26



Base-And-Bound

27

Process P1
Virtual Address Space

Stack

Heap

Data

Code

0x0000 7fff ffff ffff

0x0000 0000 0000 1000

Physical Memory

0x0000 0000 0000 0000

0x0000 0003 B9AC A000

16 GB

Base

Bound

Not to scale



Base-And-Bound Addressing

28

Core

Physical Memory

Physical Address

Data

ALURegisters FPUrps, rpi, 
rflags

Cache

SSD

MMU

Virtual
Address

(VA)

Physical
Address

(PA)

Exception

Process Base Bound

P1 0x… size

P2 0x… size

P3 0x… size

P4 0x… size

PA = VA + Base

VA > Bound

What if we introduce a fifth process?



Base-And-Bound Addressing

29

Core

Physical Memory

Physical Address

Data

ALURegisters FPUrps, rpi, 
rflags

Cache

SSD

MMU

Virtual
Address

(VA)

Physical
Address

(PA)

Exception

Process Base Bound

P1 0x… size

P2 0x… size

P3 0x… size

P4 0x… size

PA = VA + Base

VA > Bound

What if we introduce a fifth process?



Practice with Base-and-Bound

Assume that you are currently executing a process P with 
Base 0x1234 and Bound 0x100. 

• What is the physical address that corresponds to the virtual address 0x47?

• What is the physical address that corresponds to the virtual address 0x123?

30

PA = VA + BaseVA > Bound



Practice with Base-and-Bound

Assume that you are currently executing a process P with 
Base 0x1234 and Bound 0x100. 

• What is the physical address that corresponds to the virtual address 0x47?

• What is the physical address that corresponds to the virtual address 0x123?

31

PA = 0x127b

PA is invalid -> exception

PA = VA + BaseVA > Bound



Evaluating Base-and-Bound

• Isolation: don’t want different process states collided in 
physical memory

• Efficiency: want fast reads/writes to memory

• Sharing: want option to overlap for communication

• Utilization: want best use of limited resource

• Virtualization: want to create illusion of more resources

32



Possibilities

Let’s look at some good and bad possibilities

• Base-and-bound

• Segmentation

• Paging

33



Segmentation

34

Process P1
Virtual Address Space

Stack

Heap

Data

Code

0x0000 7fff ffff ffff

0x0000 0000 0000 1000

Physical Memory

0x0000 0000 0000 0000

0x0000 0003 B9AC A000

16 GB

Code Base
Code Bound

Not to scale

Data Base
Data Bound

Heap Base
Heap Bound

Stack Base
Stack Bound



Segmentation

35

Core

Physical Memory

Physical Address

Data

ALURegisters FPUrps, rpi, 
rflags

Cache

SSD

MMU

Virtual
Address

(VA)

Physical
Address

(PA)

Exception

Process Base Bound Permissions

P1 Code 0x… size R-X

P1 Data 0x… size RW-

P1 Heap 0x… size RW-

P1 Stack 0x… size RW-

P2 …

PA = Base[Index] + Offset

Offset > Bound[Index] or invalid access

VA must be decoded into Index and Offset (like caching).
Index gives segment
Offset gives byte address inside segment VA: Index Offset

What if we introduce another process 
and the data segment is too big?



Practice with Segmentation

Assume that you are currently executing a process P with the following 
segment table:

• What is the physical address that corresponds to the virtual address 0x001?

• What is the physical address that corresponds to the virtual address 0xD47?

36

Base Bound Permissions

0x4747 0x080 RW-

0x2424 0x040 RW-

0x0023 0x080 RW-

0x1000 0x200 R-X

How many bits needed for the Index?

PA = Base[Index] + Offset

Offset > Bound[Index] or invalid access

VA: Index Offset



Practice with Segmentation

Assume that you are currently executing a process P with the following 
segment table:

• What is the physical address that corresponds to the virtual address 0x001?

• What is the physical address that corresponds to the virtual address 0xD47?

37

Base Bound Permissions

0x4747 0x080 RW-

0x2424 0x040 RW-

0x0023 0x080 RW-

0x1000 0x200 R-X

How many bits needed for the Index?

00 00 0000 0001 0x4748

11 01 0100 0111 0x1147

PA = Base[Index] + Offset

Offset > Bound[Index] or invalid access

VA: Index Offset



Evaluating Segmentation

• Isolation: don’t want different process states 
collided in physical memory

• Efficiency: want fast reads/writes to memory

• Sharing: want option to overlap for communication

• Utilization: want best use of limited resource

• Virtualization: want to create illusion of more 
resources

38



Possibilities

Let’s look at some good and bad possibilities

• Base-and-bound

• Segmentation

• Paging

39



Paging

40

Process P1
Virtual Address Space

Stack

Heap

Data

Code

0x0000 7fff ffff ffff

0x0000 0000 0000 1000

Physical Memory

0x0000 0000 0000 0000

0x0000 0003 B9AC A000

16 GB

Page 0
Page 1
Page 2

Page n-1

Frame ___

Frame ___

Frame ___

Frame ___



Paging

41

Core

Physical Memory

Physical Address

Data

ALURegisters FPUrps, rpi, 
rflags

Cache

SSD

MMU Page Table

Virtual
Address

(VA)

Physical
Address

(PA)

Exception

P Frame Permissions

47 R-X

NULL RW-

13 RW-

42 RW-

105 R-X

PA = Frame[Page] +++ Offset

Invalid page or invalid access

VA must be decoded into Page and Offset (like caching).
Page # is index into page table (gives P Frame)
Offset gives byte address inside P Frame VA: Page Offset

What if we introduce another process 
and we’ve run out of physical memory?

Concatenation



Practice with Paging

Assume that you are currently executing a process P with the following page table 
on a system with 16-byte pages:

• What is the physical address that corresponds to the virtual address 0x147?

• What is the physical address that corresponds to the virtual address 0x16E?

Page Frame Permissions

0x17 0x47 RW-

0x16 0xF4 RW-

0x15 NULL RW-

0x14 0x23 R-X

42

How many bits for the Page number?
How many bits for the Offset?

PA = Frame[Page] +++ Offset

Invalid page or invalid access

VA: Page Offset

Assume the page 
table is much bigger



Practice with Paging

Assume that you are currently executing a process P with the following page table 
on a system with 16-byte pages:

• What is the physical address that corresponds to the virtual address 0x147?

• What is the physical address that corresponds to the virtual address 0x16E?

Page Frame Permissions

0x17 0x47 RW-

0x16 0xF4 RW-

0x15 NULL RW-

0x14 0x23 R-X

43

How many bits for the Page number?
How many bits for the Offset?

00010100 0111 0x237

00010110 1110 0xF4E

PA = Frame[Page] +++ Offset

Invalid page or invalid access

Assume the page 
table is much bigger

VA: Page Offset



Practice with Paging

Assume that you are currently executing a process P with the following page table 
on a system with 16-byte pages:

Page Frame Permissions

0x17 0x47 RW-

0x16 0xF4 RW-

0x15 NULL RW-

0x14 0x23 R-X

44

How many bits for the Page number?
How many bits for the Offset?

00010100 0111 0x237

PA = Frame[Page] +++ Offset

Invalid page or invalid access

Assume the page 
table is much bigger

VA: Page Offset

What is the physical address that 
corresponds to the virtual address 
0x147?

Page 0xF4

Page 0x47

Page 0x14
Frame 0x22
Frame 0x23
Frame 0x24
Frame 0x25

Frame 0x45
Frame 0x46
Frame 0x47
Frame 0x48

Frame 0xF0
Frame 0xF1

Frame 0xF2
Frame 0xF3
Frame 0xF4
Frame 0xF5

…
…

Page 0x14
Page 0x15
Page 0x16
Page 0x17

Physical Memory

Virtual Memory



Memory as a Cache

• Each page table entry has a valid bit

• For valid entries, frame indicates 
physical address of page in memory

• A page fault occurs when a program 
requests a page that is not currently in 
memory
• takes time to handle, so context switch
• evict another page in memory to make 

space (which one?)

MMU

v Frame Permissions

1 47 RW-

0 NULL RW-

0 13 RW-

1 42 R-X

…

45



Page Replacement Algorithms

• Random: Pick any page to eject at random 
• Used mainly for comparison 

• FIFO: The page brought in earliest is evicted 
• Ignores usage 

• OPT: Belady’s algorithm
• Select page not used for longest time 

• LRU: Evict page that hasn’t been used for the longest
• Past could be a good predictor of the future 

• MRU: Evict the most recently used page
• LFU: Evict least frequently used page 

46



More Paging Practice

• Assume that you are currently executing a process P with the following page table 
on a system with 256-byte pages:

• What is the physical address that corresponds to the virtual address 0xF947?

• What is the physical address that corresponds to the virtual address 0xF700?
47

Page valid P Frame Permissions

… … … …

0xFA 1 0x47 R,W

0xF9 1 0x24 R,W

0xF8 0 NULL R,W

0xF7 0 0x23 R,X

… … … …

How many bits for the Page number?
How many bits for the Offset?

PA = Frame[Page] +++ Offset

Invalid page or invalid access

VA: Page Offset



More Paging Practice

• Assume that you are currently executing a process P with the following page table 
on a system with 256-byte pages:

• What is the physical address that corresponds to the virtual address 0xF947?

• What is the physical address that corresponds to the virtual address 0xF700?
48

Page valid P Frame Permissions

… … … …

0xFA 1 0x47 R,W

0xF9 1 0x24 R,W

0xF8 0 NULL R,W

0xF7 0 0x23 R,X

… … … …

0xF9 0x47 0x2447

0xF7 0x00 0x2300 Page fault

How many bits for the Page number?
How many bits for the Offset?

PA = Frame[Page] +++ Offset

Invalid page or invalid access

VA: Page Offset



Evaluating Paging

• Isolation: don’t want different process states collided 
in physical memory

• Efficiency: want fast reads/writes to memory

• Sharing: want option to overlap for communication

• Utilization: want best use of limited resource

• Virtualization: want to create illusion of more 
resources

49


