Process Scheduling

Review: Multiprocessing

The lllusion

* Abstraction: logical control flow
within a process

The Reality
* Context switching processes

* User cannot predict how
instructions will interleave

Memory Memory Memory | Memeoy
Stack Stack Stack
Stack Stack Stack Heap Heap Heap
Heap Heap Heap Data Data Data
Data Data Data Code Code Code
Code Code Code 1 SRR S o SR
. Lregisters : registers registers

EE

Possible Metrics

* Latency: how much time between when a job is requested and when
a job is completed

* Response time: how much time between when a job is requested
and when you start processing the job

* Throughput: the rate at which jobs are completed

Simplifying Assumptions (for now)
* Jobs are run to completion before beginning the next job

* The run-time of each job is known in advance

* Jobs use only the CPU

First In, First Out (FIFO)

* Jobs are scheduled in the order they arrive

* Example:

* Job A arrives at time 0, takes time 10 to complete
e Job B arrives at time 5, takes time 10 to complete
* Job C arrives at time 10, takes time 10 to complete

Average Latency = 12+2>%20 - 15
Average Response = =212 = 5
Throughput = = =1

> Time
20 40 60

80 100 120

Practice with First In, First Out (FIFO)

* Jobs are scheduled in the order they arrive

* Example:
* Job A arrives at time 0, takes time 100 to complete
e Job B arrives at time 5, takes time 10 to complete
* Job Carrives at time 10, takes time 10 to complete

> Time
0 20 40 60 80 100 120

Practice with First In, First Out (FIFO)

* Jobs are scheduled in the order they arrive

* Example:
* Job A arrives at time 0, takes time 100 to complete
e Job B arrives at time 5, takes time 10 to complete

* Job Carrives at time 10, takes time 10 to complete

100+105+110 - 105

3
0+95+100 - 65

3

Average Latency =
Average Response =
Throughput = —_ = .025

> Time
0 20 40 60 80 100 120

Shortest Job First (SJF)

* Jobs are scheduled in order of length (shortest first)

* Example:

* Job A arrives at time 0, takes time 10 to complete
* Job B arrives at time 5, takes time 100 to complete
* Job C arrives at time 10, takes time 10 to complete

40

60

80

100

120

10+115+10 - 45

Average Latency =
Average Response = ~*2>*2 = 5
Throughput == =.025

120

Time

Practice with Shortest Job First (SJF)

* Jobs are scheduled in order of length (shortest first)

* Example:

* Job A arrives at time 0, takes time 100 to complete
e Job B arrives at time 5, takes time 10 to complete
* Job Carrives at time 10, takes time 10 to complete

20

40

] l
Time

60 80 100 120

Practice with Shortest Job First (SJF)

* Jobs are scheduled in order of length (shortest first)

* Example:
* Job A arrives at time 0, takes time 100 to complete
e Job B arrives at time 5, takes time 10 to complete

100+105+110 - 105

* Job Carrives at time 10, takes time 10 to complete Average Latency =
Average Response =

Throughput = = =.025

120

0+95+100 _
+100 - 65

Time
20 40 60 80 100 120

Simplifying Assumptions (for now)
o i befora becinning "

* The run-time of each job is known in advance

* Jobs use only the CPU

Shortest Time-to-Completion First (STCF)

* The job with the shortest time-to-completion is scheduled next

* |f a job arrives with a shorter time-to-completion then the current job, it
the current job

* Example:
* Job A arrives at time 0, takes time 100 to complete
* Job B arrives at time 5, takes time 10 to complete
e Job Carrives at time 10, takes time 10 to complete

Average Latency =

Average Response = 22*° = 1.6

Throughput = = = .025

120

120+10+15 _
10415 - 48.3

> Time
20 40 60 80 100 120

Simplifying Assumptions (for now)
o i befora becinning "

. . onch iobic] o

* Jobs use only the CPU

Round Robin (RR)

* Run jobs for a fixed time slice (e.g., 2), cycle through all job that are
not yet completed

* Example:
* Job A arrives at time 0, takes time 10 to complete
e Job B arrives at time 0, takes time 10 to complete

e Job Carrives at time 0, takes time 10 to complete

26+28+30 - 28

3
0+2+4 _
—=2

Average Latency =
Average Response =
Throughput = = =1

> Time
0 30 60

Practice with Round Robin (RR)

* Run jobs for a fixed time slice (e.g., 2), cycle through all job that are
not yet completed

* Example:

* Job A arrives at time 0, takes time 100 to complete
* Job B arrives at time 10, takes time 10 to complete
* Job Carrives at time 10, takes time 10 to complete

L

0 20 40 60 80 100 120

> Time

Practice with Round Robin (RR)

* Run jobs for a fixed time slice (e.g., 2), cycle through all job that are

not yet completed

* Example:
* Job A arrives at time 0, takes time 100 to complete
* Job B arrives at time 10, takes time 10 to complete
* Job Carrives at time 10, takes time 10 to complete

FBCABC

FBCABC

120+26+28 - 58

3
0+0+2 _
02 - 6

Average Latency =
Average Response =
Throughput = = =.025

120

20

40

60

80

100

120

> Time

Simplifying Assumptions (for now)
o i befora becinning "
, ek iahic] o

+Jobsuse onlythe CPU

Processes are not all the same

* CPU-bound processes use a lot of CPU
* e.g., compiling, scientific computing applications, mp3 encoding

A

> Time

0 20 40 60 80 100 120

* |/O-bound processes use CPU in short bursts
* e.g., browsing small webpages, indexing a file system
A A A A A A A

> Time

0 20 40 60 80 100 120

e Balanced processes are somewhere in between
* e.g., playing videos, moving windows around

Comparing Scheduling Algorithms

* FIFO

e works well if jobs are short
e otherwise, bad latency and bad response time

* STCF

e good latency
e very uneven response time (bad fairness)
e assumes run-time of each job is known in advance

* RR
e good response time
* bad latency + overhead of context switching
 poor fairness for mixes of CPU-bound and 1/0O-bound

Multi-level Feedback Queues

* Goal: optimize latency while minimizing response time for interactive
jobs without knowing run-time of jobs in advance

* General idea: maintain multiple queues, each with a different priority
level

Scheduling rules:
1. If Priority(A) > Priority(B), run A

»
»

as —(a)—@ (@)

2. If Priority(A) = Priority(C), run A and C Round Robin g Q4
3. When a job enters the system, it is place in the highest o

priority queue CE Q3
4. Once a job uses up its time allotment at current priority 2

level, it moves down one queue -;-:D Q2

5. After some time period, move all jobs in the system to the
highest priority queue Q1

Multi-level Feedback Queues

* Goal: optimize latency while minimizing response time for interactive
jobs without knowing run-time of jobs in advance

* General idea: maintain multiple queues, each with a different priority
level

Scheduling rules:
1. If Priority(A) > Priority(B), run A

»
»

as —(©)—[®

2. If Priority(A) = Priority(C), run A and C Round Robin g Q4 —{ A
3. When a job enters the system, it is place in the highest o

priority queue CE Q3
4. Once a job uses up its time allotment at current priority 2

level, it moves down one queue -;-:D Q2

5. After some time period, move all jobs in the system to the
highest priority queue Q1

Multi-level Feedback Queues

* Goal: optimize latency while minimizing response time for interactive
jobs without knowing run-time of jobs in advance

* General idea: maintain multiple queues, each with a different priority
level

Scheduling rules:
1. If Priority(A) > Priority(B), run A

»
»

s —@—0)—@

2. If Priority(A) = Priority(C), run A and C Round Robin g Q4 —{ A
3. When a job enters the system, it is place in the highest o

priority queue CE Q3
4. Once a job uses up its time allotment at current priority 2

level, it moves down one queue -;-:D Q2

5. After some time period, move all jobs in the system to the
highest priority queue Q1

Schedulers in Operating Systems

* CPU Scheduler selects next process to run from the runnable pool
* Page Replacement Scheduler selects page to evict
* Disk Scheduler selects next read/write operation to perform

* Network Scheduler selects next packet to send/process

