
Operating System Processes

Drawing: Cache

• Take three minutes to draw “cache”

• Some reminders
• Multiple levels
• Different sizes and speeds per level
• Tag/Index/Offset
• Lines
• Sets
• Data blocks
• Valid bits

2

3

4

5

Introduction to Operating Systems

• An operating system (OS) manages a computer's resources
• Examples: OSX, Windows, Ubuntu, iOS, Android, Chrome OS

• Core OS functionality is implemented by the OS kernel

6

• resource allocation
• isolation
• communication
• access control

• multiprocessing
• virtual memory
• reliable networking
• virtual machines

• user interface
• file I/O
• device management
• process control

Operating System Goals

• Reliability: they OS should do what you want

• Availability: the OS should respond to user input

• Security: the OS should not be (easily) corrupted by an attacker

• Portability: the OS should be easy to move to new hardware platforms

• Performance: the OS should impose minimal overhead and be responsive

7

Processes

• A program (executable, binary, etc.) is a file containing code + data
• For example, in the ELF format on Linux

• A process is an instance of a running program
• One of the most profound ideas in computer science
• Not the same as “program” or “processor”

• Why would we ever have two instances of a single
program?

8

CPU

Registers

Memory

Stack
Heap

Code
Data

Multiprocessing (running a monitor)

9

Multiprocessing (running a monitor)

10

Multiprocessing: The Illusion

Each process has its own:
• Logical control flow
• Each program seems to have

exclusive use of the CPU
• Provided by kernel mechanism

called context switching

• Private address space
• Each program seems to have

exclusive use of main memory
• Provided by kernel mechanism

called virtual memory
11

CPU

Registers

Memory

Stack
Heap

Code
Data

CPU

Registers

Memory

Stack
Heap

Code
Data …

CPU

Registers

Memory

Stack
Heap

Code
Data

Process A Process B Process J

Multiprocessing: The (Traditional) Reality

A single processor (CPU) executes
multiple processes concurrently
• Process executions interleaved

(multitasking)

• Register values for nonexecuting
processes saved in memory

• Address spaces managed by virtual
memory system

12

CPU

Registers

Memory

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

Process Control Block (PCB)

To switch from one process to another (a “context switch”), the OS
maintains a PCB for each process containing:
• process table (id, user, privilege level, arguments, status, etc.)
• location of executable in storage (e.g., SSD)
• file table (a list of all open “files”)
• register values (general-purpose registers, float registers, pc, eflags…)
• memory state (stack, heap, data, etc.)
• scheduling information (number of cycles, last run time, etc.)
• ... and more!

13

Context Switching

• Processes are managed by the (memory-resident) kernel code
• Important: the kernel code is not a separate process, but rather code and

data structures that the OS uses to manage all processes

• Control flow passes from one process to another via a context switch

Process A Process B

user code (Process A)

kernel code

user code (process B)

kernel code

user code (Process A)

context switch

context switch

Time

14

Memory

Multiprocessing: The (Traditional) Reality

CPU

Registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

1. Save current registers to memory (in PCB)

15

Memory

Multiprocessing: The (Traditional) Reality

CPU

Registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

1. Save current registers to memory (in PCB)
2. Schedule next process for execution

16

Memory

Multiprocessing: The (Traditional) Reality

CPU

Registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

1. Save current registers to memory (in PCB)
2. Schedule next process for execution
3. Load saved registers and switch address space 17

Multiprocessing: The (Modern) Reality

• Multicore processors
• Multiple CPUs on single chip
• Share main memory (and some of the caches)
• Each can execute a separate process

• Scheduling of processors onto cores done by kernel

CPU

Registers

Memory

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

CPU

Registers

18

Process Life Cycle (Linux)

24

Initialize

Runnable Running

Terminated

Stopped

fork(…) exit(…) or killed

Scheduled by OS

wait(…) on I/O usuallyReady to resume
(wait is done)

Interrupted or Yielding

Idle/Ready

Waiting

ZombieNew/Create/Start

Process Life Cycle (Linux)

25

Initialize

Runnable Running

Terminated

Stopped

fork(…) exit(…) or killed

Scheduled by OS

wait(…) on I/O usuallyReady to resume
(wait is done)

Interrupted or Yielding

Creating Processes

• Parent process creates a new running child process by calling fork

• int fork(void)
• Returns 0 to the child process, child’s PID to parent process
• Child is almost identical to parent:

• Child gets an identical (but separate) copy of the parent’s virtual address space.
• Child gets identical copies of the parent’s open file descriptors
• Child has a different PID than the parent

• fork is interesting (and often confusing) because it is called once but
returns twice

26

fork Example
int main()
{

pid_t pid;
int x = 1;

pid = Fork();
if (pid == 0) {

/* Child */
printf("child : x=%d\n", ++x);
return 0;

}

/* Parent */
printf("parent: x=%d\n", --x);
return 0;

}
fork.c

What are the possible outputs?

What if we want to fork a new/separate program? 27

• Call once, return twice

• Duplicate but separate address
space
• x has a value of 1 when fork

returns in parent and child
• Subsequent changes to x are

independent

• Shared open files
• stdout is the same in both

parent and child

Modeling fork with Process Graphs

• A process graph is a useful tool for capturing the partial ordering of
statements in a concurrent program:
• Each vertex is the execution of a statement
• a -> b means a happens before b
• Edges can be labeled with current value of variables
• printf vertices can be labeled with output
• Each graph begins with a vertex with no inedges

• Any topological sort of the graph corresponds to a feasible total
ordering.
• Total ordering of vertices where all edges point from left to right

28

Process Graph Example

main

29

int main()
{

pid_t pid;
int x = 1;

pid = Fork();
if (pid == 0) {

/* Child */
printf("child : x=%d\n", ++x);
return 0;

}

/* Parent */
printf("parent: x=%d\n", --x);
return 0;

}

Process Graph Example

main

30

int main()
{

pid_t pid;
int x = 1;

pid = Fork();
if (pid == 0) {

/* Child */
printf("child : x=%d\n", ++x);
return 0;

}

/* Parent */
printf("parent: x=%d\n", --x);
return 0;

}

x = 1

Process Graph Example

main

31

int main()
{

pid_t pid;
int x = 1;

pid = Fork();
if (pid == 0) {

/* Child */
printf("child : x=%d\n", ++x);
return 0;

}

/* Parent */
printf("parent: x=%d\n", --x);
return 0;

}

x = 1

fork

Process Graph Example

main

32

int main()
{

pid_t pid;
int x = 1;

pid = Fork();
if (pid == 0) {

/* Child */
printf("child : x=%d\n", ++x);
return 0;

}

/* Parent */
printf("parent: x=%d\n", --x);
return 0;

}

x = 1

fork

x = 1
pid = <child>

x = 1
pid = 0

Parent

Child

Process Graph Example

main

33

int main()
{

pid_t pid;
int x = 1;

pid = Fork();
if (pid == 0) {

/* Child */
printf("child : x=%d\n", ++x);
return 0;

}

/* Parent */
printf("parent: x=%d\n", --x);
return 0;

}

x = 1

fork

x = 1
pid = <child>

x = 1
pid = 0

Parent

Child

Process Graph Example

main

34

int main()
{

pid_t pid;
int x = 1;

pid = Fork();
if (pid == 0) {

/* Child */
printf("child : x=%d\n", ++x);
return 0;

}

/* Parent */
printf("parent: x=%d\n", --x);
return 0;

}

x = 1

fork

x = 1
pid = <child>

x = 1
pid = 0

Parent

Child

Process Graph Example

main

35

int main()
{

pid_t pid;
int x = 1;

pid = Fork();
if (pid == 0) {

/* Child */
printf("child : x=%d\n", ++x);
return 0;

}

/* Parent */
printf("parent: x=%d\n", --x);
return 0;

}

x = 1

fork

x = 1
pid = <child>

x = 1
pid = 0

Parent

Child

Process Graph Example

main

36

int main()
{

pid_t pid;
int x = 1;

pid = Fork();
if (pid == 0) {

/* Child */
printf("child : x=%d\n", ++x);
return 0;

}

/* Parent */
printf("parent: x=%d\n", --x);
return 0;

}

x = 1

fork

x = 0
pid = <child>

x = 2
pid = 0

Parent

Child

Process Graph Example

main

37

int main()
{

pid_t pid;
int x = 1;

pid = Fork();
if (pid == 0) {

/* Child */
printf("child : x=%d\n", ++x);
return 0;

}

/* Parent */
printf("parent: x=%d\n", --x);
return 0;

}

x = 1

fork

x = 0
pid = <child>

x = 2
pid = 0

printf

printf

2

0
Parent

Child

Interpreting Process Graphs

• Original graph:

• Relabeled graph:

a b c

e

a b e c

Feasible total ordering:

a e cb

Infeasible total ordering:

x=2 2

main fork printf

printf

x=1 x=0 0
Parent

Child

38

Practice with fork

39

void fork1()
{

printf("L0\n");
fork();
printf("L1\n");
fork();
printf("Bye\n");

}
fork

fork

forkprintf

L0
printf

printf

L1

L1

printf

printf

printf

printf

Bye

Bye

Bye

Bye

Which of these outputs are feasible? L0
L1
Bye
Bye
L1
Bye
Bye

L0
Bye
L1
Bye
L1
Bye
Bye

More practice with fork

• For each of the following programs, draw the process graph and then
determine which of the possible outputs are feasible

void fork2(){
printf("L0\n");
if (fork() != 0) {

printf("L1\n");
if (fork() != 0) {

printf("L2\n");
}

}
printf("Bye\n");

}

void fork3(){
printf("L0\n");
if (fork() == 0) {

printf("L1\n");
if (fork() == 0) {

printf("L2\n");
}

}
printf("Bye\n");

}

L0
L1
Bye
Bye
L2
Bye

L0
Bye
L1
Bye
Bye
L2

L0
Bye
L1
L2
Bye
Bye

L0
Bye
L1
Bye
Bye
L2

40

void fork2()
{

printf("L0\n");
if (fork() != 0) {

printf("L1\n");
if (fork() != 0) {

printf("L2\n");
}

}
printf("Bye\n");

}

forkforkprintf

L0

printf

printf

L1

Bye

printf

printf

Bye

L2

printf

Bye

L0
L1
Bye
Bye
L2
Bye

L0
Bye
L1
Bye
Bye
L2

Which of these outputs are feasible?

41

42

void fork3()
{

printf("L0\n");
if (fork() == 0) {

printf("L1\n");
if (fork() == 0) {

printf("L2\n");
}

}
printf("Bye\n");

}

printf printf

fork

printf

printf

fork

print
fL0

L2

Bye

L1 Bye

printf
Bye

L0
Bye
L1
L2
Bye
Bye

L0
Bye
L1
Bye
Bye
L2

Which of these outputs are feasible?

Process Life Cycle (Linux)

43

Initialize

Runnable Running

Terminated

Stopped

fork(…) exit(…) or killed

Scheduled by OS

wait(…) on I/O usuallyReady to resume
(wait is done)

Interrupted or Yielding

Reaping Children

• Reaping
• Performed by parent on terminated child (using wait or waitpid)
• Parent is given exit status information
• Kernel then deletes zombie child process

• int wait(int *child_status)
• Suspends current process until one of its children terminates
• Return value is the pid of the child process that terminated
• If child_status != NULL, then the integer it points to will be set to a value that

indicates reason the child terminated and the exit status:
• Checked using macros defined in wait.h

• WIFEXITED, WEXITSTATIS, WIFSIGNALED, WTERMSIG, WIFSTOPPED, WSTOPSIG, WIFCONTINUED
• See textbook for details

44

wait Example

45

void fork6() {
int child_status;

if (fork() == 0) {
printf("HC: hello from child\n");
exit(0);

}
else {

printf("HP: hello from parent\n");
wait(&child_status);
printf("CT: child has terminated\n");

}
printf("Bye\n");

}

printf wait printffork

printf
exit

HP

HC

CT
Bye

Feasible output:
HC
HP
CT
Bye

Infeasible output:
HP
CT
Bye
HC

Reaping Children

• What if parent doesn’t reap?

• If any parent terminates without reaping a child, then the orphaned child will
be reaped by init process (pid == 1)

• So, only need explicit reaping in long-running processes
• e.g., shells and servers

46

Process Life Cycle (Linux)

47

Initialize

Runnable Running

Terminated

Stopped

fork(…) exit(…) or killed

Scheduled by OS

wait(…) on I/O usuallyReady to resume
(wait is done)

Interrupted or Yielding

Terminating Processes

• Process becomes terminated for one of three reasons:
• Returning from the main routine
• Receiving a signal whose default action is to terminate
• Calling the exit function

• void exit(int status)
• Terminates with an exit status of status
• Convention: normal return status is 0, nonzero on error
• Another way to explicitly set the exit status is to return an integer value from the

main routine

• exit is called once but never returns.

48

Loading and Running Programs: execve

• What if we want to run a brand-new program?

int execve(char *filename, char *argv[], char *envp[])

• Loads and runs in the current process:
• Executable file filename: can be object file or script file (e.g., #!/bin/bash)
• …with argument list argv: by convention argv[0]==filename
• …and environment variable list envp: “name=value” strings (e.g., USER=droh)

• Overwrites code, data, and stack
• Retains PID, open files and signal context

• Called once and never returns (unless there is an error)

49

Parent Process

fork()

wait()

execve()
Child Process

exit()

exit()
50

a.out a.out

a.out b.out

Linux Process Hierarchy

51

Login shell

ChildChild

GrandchildGrandchild

[0]

Daemon
e.g. httpd

init [1]

Login shell

Child

…
……

Note: you can view the
hierarchy using the Linux
pstree command

pstree

52

[ajcd2020@itbdcv-lnx04p ~]$ pstree
systemd─┬─NetworkManager───2*[{NetworkManager}]

├─VGAuthService
├─agetty
├─atd
├─auditd───{auditd}
├─bomblab-reportd
├─bomblab-request
├─bomblab-resultd
├─bomblab.pl
├─chronyd
├─clamd───{clamd}
├─crond
├─dbus-daemon───{dbus-daemon}
├─firewalld───{firewalld}
├─freshclam
├─irqbalance───{irqbalance}
├─lsmd
├─mcelog
├─oddjobd
├─polkitd───11*[{polkitd}]
├─rhsmcertd
├─rsyslogd───2*[{rsyslogd}]
├─salt-minion───salt-minion─┬─salt-minion
│ └─3*[{salt-minion}]
├─2*[sh───node─┬─node───10*[{node}]]
│ └─10*[{node}]]
├─smartd
├─sshd───sshd───sshd───bash───pstree
├─sssd─┬─2*[sssd_be]
│ ├─sssd_nss
│ └─sssd_pam

pstree

53

[ajcd2020@itbdcv-lnx04p ~]$ pstree ajcd2020
bomblab-reportd

bomblab-request

bomblab-resultd

bomblab.pl

sshd───bash───pstree

systemd───(sd-pam)

