Operating System Processes

Drawing: Cache

* Take three minutes to draw “cache”

* Some reminders
* Multiple levels
» Different sizes and speeds per level
* Tag/Index/Offset
* Lines
* Sets
* Data blocks
* Valid bits

__ MNemgry

\— bU ~byles ——*\

CPU
Ny
| Cache C&7)
) ﬁ\,&}
—PU
U [2@0\51?/
(Hetus
I

C = matloc (An - size ol (Rloh

’(Z/L_l
C

\ (eche
o) /

— [

—
— —

Te——

:)
- } . </I\
oy CLu+ yo 0 BB j 4

(= mehoe [e sreof (Float)
o (Wry=0o, § & N Y CLYT = malle(

——;\/r//]

— 5\%56(
: m + (ocxjr»
;((y\ \ ﬂ CEOE
t:—;’\:_/ﬂ

S

Introduction to Operating Systems

* An (OS) manages a computer's resources
* Examples: OSX, Windows, Ubuntu, iOS, Android, Chrome OS

* Core OS functionality is implemented by the OS

’ [€
O
Lyl

)

* resource allocation * multiprocessing e user interface
e jsolation * virtual memory e filel/O
* communication * reliable networking * device management

e access control e virtual machines * process control

Operating System Goals

* Reliability: they OS should do what you want

* Availability: the OS should respond to user input

 Security: the OS should not be (easily) corrupted by an attacker

* Portability: the OS should be easy to move to new hardware platforms

* Performance: the OS should impose minimal overhead and be responsive

Processes

c A (executable, binary, etc.) is a file containing code + data
* For example, in the ELF format on Linux
Memory
°* A is an instance of a running Stack
* One of the most profound ideas in computer science Heap
” o ” D t
* Not the same as “program” or “processor deae
CPU
* Why would we ever have two instances of a single Registers

program?

Multiprocessing (running a monitor

Processes

Name (n)

plugin-container
bluetoothd

firefox

WindowServer
plugin-container
kitty

coreaudiod
plugin-container
Stats

Slack Helper (Renderer)
plugin-container
Dropbox

syspolicyd

Notability

Adobe Desktop Service
AdobeIPCBroker

teed

OneDrive

distnoted

Core Sync

Shottr

configd

trustd
AdobeResourceSynchronizer
Electron Helper (Renderer)
streem

Slack
Adobe_CCXProcess.node
Slack Helper
Microsoft PowerPoint
fileproviderd

Adobe Crash Handler
Adobe Crash Handler
Adobe Crash Handler
Creative Cloud Helper
Dropbox Helper (Renderer)
sharingd
WeatherWidget

Creative Cloud Helper
node

identityservicesd
Code42Desktop
OneDrive File Provider
ViewBridgeAuxiliary
LogiVCCoreService
plugin-container
nsurlsessiond
plugin-container

Box

espanso

CalendarAgent
com.apple.hiservices-xpcservice
familycircled

Electron

sublime_text
com.apple.WebKit.Networking
plugin-container
AccessibilityVisualsAgent
accessoryd
accessoryupdaterd
ACCFinderSync
ACCFinderSync
ACCFinderSync
ACCFinderSync
ACCFinderSync
ACCFinderSync
ACCFinderSync
ACCFinderSync
ACCFinderSync
ACCFinderSync
ACCFinderSync
ACCFinderSync
ACCFinderSync
ACCFinderSync
ACCFinderSync

T.Read

209MB

T.Write

ajcd2020
ajcd2020
root

ajcd2020
root

ajcd2020
ajcd2020
root

ajcd2020
ajcd2020
ajcd2020
ajcd2020
ajcd2020
root

ajcd2020
ajcd2020
ajcd2020
root

ajcd2020
ajcd2020
ajcd2020
ajcd2020
root

root

ajcd2020
ajcd2020
ajcd2020
ajcd2020
ajcd2020
ajcd2020
ajcd2020
ajcd2020
ajcd2020
ajcd2020
ajcd2020
ajcd2020
ajcd2020
ajcd2020
ajcd2020
ajcd2020
ajcd2020
ajcd2020
ajcd2020
ajcd2020
ajcd2020
ajcd2020
ajcd2020
ajcd2020
ajcd2020
ajcd2020
ajcd2020
ajcd2020
ajcd2020
ajcd2020
ajcd2020
ajcd2020
ajcd2020
ajcd2020
ajcd2020
root

root

ajcd2020
ajcd2020
ajcd2020
ajcd2020
ajcd2020
ajcd2020
ajcd2020
ajcd2020
ajcd2020
ajcd2020
ajcd2020
ajcd2020
ajcd2020
ajcd2020
ajcd2020

Esc to go
State

Runnable
Runnable
Unknown

Runnable
Unknown

Runnable
Runnable
Unknown

Runnable
Runnable
Runnable
Runnable
Runnable
Unknown

Runnable
Runnable
Runnable
Unknown

Runnable
Runnable
Runnable
Runnable
Unknown

Unknown

Runnable
Runnable
Runnable
Runnable
Runnable
Runnable
Runnable
Runnable
Runnable
Runnable
Runnable
Runnable
Runnable
Runnable
Runnable
Runnable
Runnable
Runnable
Runnable
Runnable
Runnable
Runnable
Runnable
Runnable
Runnable
Runnable
Runnable
Runnable
Runnable
Runnable
Runnable
Runnable
Runnable
Runnable
Runnable
Unknown

Unknown

Runnable
Runnable
Runnable
Runnable
Runnable
Runnable
Runnable
Runnable
Runnable
Runnable
Runnable
Runnable
Runnable
Runnable
Runnable

back

Multiprocessing (running a monitor

CPU — 2.61 2.98 2.68
100%

Temperatures

Sensor

14.66iB/32.06iB

1.96iB/3.06iB Battery
CPU Proximity

GPU

PECI CPU

Disk
Disk Mount

/dev/disklsl /System/Volumes/Update/mntl
/dev/disklslsl /

/dev/diskls2 /System/Volumes/Data
/dev/disk1s3 /System/Volumes/Preboot
/dev/disk1s5 /System/Volumes/VM
/dev/disk1sé /System/Volumes/Update

0s

Name (n) Mems(m)] e User State
80.5Kb/s AL
40.2Kb/s AL conm.apple.AppleUserHIDDrivers o 0% root Unknown
btm 1% ajcd20.. Runnable

bluetoothd o 0% root Unknown
plugin-container % 0 ajcd20.. Runnable
ssiond 20.. Runnable

cloudd 1% 5 o ajcd20.. Runnable
firefox 1% .5% 5 o ajcd20.. Runnable
syspolicyd 5 X 08 root Unknown
teed . . root Unknown
plugin-container . 5% ajcd20.. Runnable
Electron Helper (Renderer) . .3% M ajcd20.. Runnable
WindowServer 5 0% root Unknown
trustd 5 X root Unknown
coreaudiod 5 X root Unknown
1sd .18 o root Unknown
plugin-container o o ajcd20.. Runnable
Stats o o o ajcd20.. Runnable
Kitty o o ajcd20.. Runnable
rtcreportingd 0% o root Unknown
Dropbox .0% o c ajcd20.. Runnable
trustd 5 o c ajcd20.. Runnable

Multiprocessing: The [llusion

Each process has its own:

* Logical control flow
e Each program seems to have

* Provided by kernel mechanism
called

* Private address space
e Each program seems to have

* Provided by kernel mechanism
called

Process A

Memory

Process B

Memory

i

Process J

Memory

Stack

Stack

Stack

Heap

Heap

Heap

Data

Data

Data

Code

Code

Code

CPU

CPU

CPU

Registers

Registers

Registers

Multiprocessing: The (Traditional) Reality

A single processor (CPU) executes

processes
* Process executions interleaved PO _ Memory
(multitasking) A =
Data Data ces Data
Code - Code Code
. . : Saved : Saved Saved
* Register values for nonexecuting B o I i registers
processes saved in memory E—
Registers

* Address spaces managed by

Process Control Block (PCB)

To switch from one process to another (a “context switch”), the OS
maintains a PCB for each process containing:

(id, user, privilege level, arguments, status, etc.)
in storage (e.g., SSD)
(a list of all open “files”)
:(Eeneral—purpose registers, float registers, pc, eflags...)
e 3tack, heap, data, etc.)
(number of cycles, last run time, etc.)

e ... and more!

Context Switching

* Processes are managed by the (memory-resident) kernel code

* Important: the kernel code is not a separate process, but rather code and
data structures that the OS uses to manage all processes

* Control flow passes from one process to another via a context switch

Process A Process B

I
I
I
I
: user code (Process A)
I

Time kernel code } context switch

user code (process B)

user code (Process A)

1

|

I

|)

i kernel code } context switch
I

I

I 14
I

Multiprocessing: The (Traditional) Reality

Memory
Stack Stack Stack
Heap : Heap Heap
Data Data cee Data
Code Code Code
Saved Saved Saved
registers registers registers
CPU
Registers

1. Save current registers to memory (in PCB)

Multiprocessing: The (Traditional) Reality

Memory
Stack Stack Stack
Heap Heap Heap
Data Data Data
Code Code Code
Saved Saved Saved
registers registers registers
CPU
Registers

2. Schedule next process for execution

Stack

Heap

Data

Code

Saved
registers

Schedule next process for execution
Load saved registers and switch address space

Multiprocessing: The (Traditional) Reality

Stack

Heap

Data

Code

Saved
regﬂem

JJ-

CPU

Saved
regﬂem

Registers

Multiprocessing: The (Modern) Reality

Memory
Stack Stack Stack
Heap Heap ; Heap
Data Data C Data
Code Code Code
Saved Saved Saved
registers registers registers
CPU : CPU
Registers | : | Registers

T I I R

* Multiple CPUs on single chip
e Share main memory (and some of the caches)

 Each can execute a separate process
* Scheduling of processors onto cores done by kernel

Process Life Cycle (Linux)

Initialize

fork(..)

Runnable

Ready to resume
(wait is done)

Interrupted or Yielding

Scheduled by OS

Stopped

Terminated
exit (..) or killed

Running

wait (..) onl/O usually

Process Life Cycle (Linux)

P——_—

Initialize

Runnable

25

Creating Processes

process creates a new running process by calling fork

* 1nt fork(void)

’

* Child is almost identical to parent:
e Child gets an identical (but separate) copy of the parent’s virtual address space.
* Child gets identical copies of the parent’s open file descriptors
* Child has a different PID than the parent

 fork isinteresting (and often confusing) because it is called once but
returns twice

fork Example

?nt main () * Call once, return twice
‘k /\’\V pid t pid;
int x = 1; * Duplicate but separate address
pid = Fork(); Space
if (pid == 0) { * x has a value of 1 when fork
/* Child */ . .
printf ("child : x=3%d\n", ++x); returns in parent and child
} return 0; * Subsequent changes to x are
independent
/* Parent */
printf ("parent: x=%d\n", --x); .
return 0; fork « | ® Shared open files
: stdout is the same in both

What are the possible outputs? parent and child

What if we want to fork a new/separate program? 27

Modeling fork with Process Graphs

* A is a useful tool for capturing the partial ordering of
statements in a concurrent program.

Each vertex is the execution of a statement

* a->b means a happens before b

Edges can be labeled with current value of variables

printf vertices can be labeled with output

Each graph begins with a vertex with no inedges

* Any topological sort of the graph corresponds to a feasible total
ordering.

» Total ordering of vertices where all edges point from left to right

Process Graph Example

{

int main ()

pid t pid;
int x = 1;

pid = Fork();

if (pid == 0) {
/* Child */
printf ("child
return O;

/* Parent */

x=%d\n", ++x);

printf ("parent: x=%d\n", --x);

return 0;

main

29

Process Graph Example

{

int main ()

pid t pid;
int x = 1;

pid = Fork();

if (pid == 0) {
/* Child */
printf ("child
return O;

/* Parent */

x=%d\n", ++x);

printf ("parent: x=%d\n", --x);

return 0;

30

Process Graph Example

{

int main ()

pid t pid;
int x = 1;

pid = Fork();

if (pid == 0) {
/* Child */
printf ("child
return O;

/* Parent */

x=%d\n", ++x);

printf ("parent: x=%d\n", --x);

return 0;

x =1
o———0
main fork

31

Process Graph Example

{

——

int main ()

pid t pid;
int x = 1;

pid = Fork();

if (pid == 0) {
/* Child */
printf ("child
return O;

/* Parent */

x=%d\n", ++x);

printf ("parent: x=%d\n", --x);

return 0;

x =
pid 0
»®
x =
x = 1 | pid <child>
[»® »®
main fork

Child

Parent

32

Process Graph Example

{

int main ()

pid t pid;
int x = 1;

pid = Fork();

if (pid == 0) {
/* Child */
printf ("child
return O;

/* Parent */

x=%d\n", ++x);

printf ("parent: x=%d\n", --x);

return 0;

x =
pid 0
»®
x =
x = 1 | pid <child>
[»® »®
main fork

Child

Parent

33

Process Graph Example

int main ()
{ x =1

pid t pid; pid = 0

int x = 1;) Child

pid = Fork();

if (pid == 0) |
/* Child */ x =1
‘ printf ("child : x=%d\n", ++x); %« = 1 | pid = <child>
return O; o- @ >0 Parent
main fork

}

/* Parent */
printf ("parent: x=%d\n", --x);
return 0;

34

Process Graph Example

{

int main ()

pid t pid;
int x = 1;

pid = Fork();

if (pid == 0) {
/* Child */
printf ("child
return O;

/* Parent */

printf ("parent: x=%a

return 0;

X:%H ++x) ;

x =
pid 0
»®
x =
x = 1 | pid <child>
[»® »®
main fork

Child

Parent

35

Process Graph Example

int main ()
{ x = 2

pid t pid; pid = 0

S e Child

pid = Fork();

if (pid == 0) A
/* Child */ X =
printf ("child : X:%-.-’ ++x) ; %« = 1 | pid = <child>
return O; o @ >0 Parent

main fork

/* Parent */
printf ("parent: x=%@ 0 —--x);
return 0;

36

Process Graph Example

int main ()

{ X = 2
pid t pid; pid = 0 2
int x = 1; > Child
printf

pid = Fork();

if (pid == 0) |
/* Child */ % =

‘ printf ("child : x=%d\n", ++x); %« = 1 | pid = <child>

return 0; m;in f;;k priztf Parent

}

/* Parent */
printf ("parent: x=%d\n", --x);
return 0;

37

Interpreting Process Graphs

* Original graph:

X=2 2]
® Child
printf
x=1 x=0 0
.- > Parent
main fork printf

* Relabeled graph:

Feasible total ordering: Infeasible total ordering:

{ }
e
a b c a b e C a e b C

Practice with fork

Bye
°
printf
\{70101 forkl () 1 Bye
>Q0— —» >
printf ("LO\n") ; printf fork printf
fork () ; Bze
printf ("L1\n") ; printf
fO]Ifk (ic; . LO Ii Bye
" ") . o— @ > —> >
} printt("Byein®); printf fork printf fork printf
Which of these outputs are feasible? LO LO
L1 Bye
Bye L1
Bye Bye
L1 L1
Bye Bye
Bye Bye

More practice with fork

* For each of the following programs, draw the process graph and then

determine which of the possible outputs are feasible

void fork2 () {
printf ("LO\n") ;

1f (fork() !'= 0) {
printf ("L1\n");
1f (fork() !'= 0) {

printf ("L2\n") ;

}

}
printf ("Bye\n") ;

LO LO
L1 Bye
Bye L1
Bye Bye
L2 Bye
Bye L2

volid fork3 () {
printf ("LO\n") ;

1f (fork() == 0) {
printf ("L1\n") ;
1f (fork() == 0) {

printf ("L2\n") ;
}

}
printf ("Bye\n") ;

LO LO
Bye Bye
L1 L1
L2 Bye
Bye Bye

Bye L2

Which of these outputs are feasible?

Bye Bye

printf printf

LO L1 L2 Bye
o > >® —> >0— >0
printf fork printf fork printf printf

LO
L1
Bye
Bye
L2
Bye

LO
Bye
L1
Bye
Bye
L2

41

Which of these outputs are feasible?

L2 Bye
>Q »9
printf printf

L1l Bye
pfﬁt fork pr.:';.ntf
L0 ng:}e
*— > >0
printf fork printf
LO LO
Bye Bye
L1 L1
L2 Bye
Bye Bye
Bye L2

42

Process Life Cycle (Linux)

[Initialize } [Terminated }
Interrupted or Yielding

fork(..)

exit (..) or killed

Scheduled by OS

Ready to resume wait (...) onl/O usually

(wait is done)

43

Reaping Children

* Reaping
* Performed by parent on terminated child (using wait or waitpid)
e Parent is given exit status information
e Kernel then deletes zombie child process

*int walt (int *child status)
* Suspends current process until one of its children terminates
e Return value is the pid of the child process that terminated

* If child_status = NULL, then the integer it points to will be set to a value that
indicates reason the child terminatec?and the exit status:
* Checked using macros defined in wait.h
« WIFEXITED, WEXITSTATIS, WIFSIGNALED, WTERMSIG, WIFSTOPPED, WSTOPSIG, WIFCONTINUED
* See textbook for details

wait Example

HC exit
>0— =ﬂ
printf
CT
Bye
HP Y
>e > >®

[4
fork printf

Feasible output:
HC

HP
CT
Bye

wait printf

Infeasible output:

HP
CT
Bye
HC

45

Reaping Children

 What if parent doesn’t reap?

* |f any parent terminates without reaping a child, then the orphaned child will
be reaped by init process (pid == 1)

* So, only need explicit reaping in long-running processes
* e.g., shells and servers

Process Life Cycle (Linux)

Initialize
Interrupted or Yielding
fork (\ exit (..) orkilled
Runnable
J Scheduled by OS

Ready to resume wait (...) onl/O usually

(wait is done)

Stopped

47

Terminating Processes

* Process becomes terminated for one of three reasons:
e Returning from the main routine

* Receiving a signal whose default action is to terminate
* Calling the exit function

e void exit (int status)
 Terminates with an exit status of status
* Convention: normal return status is O, nonzero on error

* Another way to explicitly set the exit status is to return an integer value from the
main routine

e exit is called once but never returns.

Loading and Running Programs: execve

 What if we want to run a brand-new program?

int execve(char *filename, char *argv][], char *envpl[])

* Loads and runs in the current process:
* Executable file filename: can be object file or script file (e.g., #! /bin/bash)
e ..with argument list argv: by convention argv [0]==filename
e ..and environment variable list envp: “name=value” strings (e.g., USER=droh)

 Overwrites code, data, and stack
e Retains PID, open files and signal context

* Called once and never returns (unless there is an error)

a.out

a.out

Parent Process

a.out

Child Process

execve ()

b.out

50

Linux Process Hierarchy

Login shell
Child

@ @ Note: you can view the
hierarchy using the Linux

pstree command

pstree

[a7cd2020@itbdcv-1nx04p ~]$ pstree

systemd—

—NetworkManager
—VGAuthService
—agetty

—atd
—auditd——{auditd}
—bomblab-reportd
—bomblab-request
—bomblab-resultd

2* [{NetworkManager}]

—bomblab.pl

—chronyd

—clamd——{clamd}

—crond

—dbus-daemon——{dbus-daemon}

—firewalld——{firewalld}

—freshclam

—irgbalance {irgbalance}

—1 smd

—mcelog

—oddjobd

—polkitd——11*[{polkitd}]

—rhsmcertd

—rsyslogd 2*[{rsyslogd}]

—salt-minion——salt-minion——salt-minion

L_3*[{salt-minion}]

—2*[sh node——node——10* [{node}]]
L-10*[{node}]]

—smartd

—sshd——sshd sshd bash——pstree

—sssd 2*[sssd be]
_l:sssd_nss

52

pstree

[aJcd2020@itbdcv-1nx04p ~]$ pstree ajcd2020
bomblab-reportd

bomblab-request
bomblab-resultd

bomblab.pl

sshd bash pstree

systemd—— (sd-pam)

53

