
Cache
Introduction and Direct Mapped

Drawing: Dynamic Memory

• Take three minutes to draw “heap” memory

• Some reminders
• Implicit lists
• Headers and footers
• User (payload) pointers
• Blocks and block pointers
• Alignment

2

3

4

The “Book” Cache Analogy

• You’ve decided to learn more about computer systems than is covered in this
course.

• The library contains all the books you want, but you prefer to study at home.

• You have the following constraints:

5

Desk
(can hold one book)

Library
(can hold many books)

Life without Cache

Latency: average time to access a book

𝐿 = 15𝑚 + 10𝑚 + 15𝑚 = 40𝑚

Throughput: books read per time period

𝑇 =
1𝑏
50𝑚 = 1.2

𝑏
ℎ𝑟

6

Life with Cache

7

Latency: average time to access a book

𝐿 =
45 + 5 + 5

3
≈ 18𝑚

Throughput: books read per time period

𝑇 =
3𝑏
85𝑚

≈ 2
𝑏
ℎ𝑟

Caching Vocabulary

• Size: the total number of bytes that can be stored in the cache

• Cache Hit: the desired value is in the cache and quickly returned
• Hite rate: the fraction of accesses that are hits
• Hit time: the time to process a hit

• Cache Miss: the desired value is not in the cache and must be fetched elsewhere
• Miss rate: the fraction of accesses that are misses
• Miss penalty: the additional time to process a miss

• Average access time: hit-time + miss-rate * miss-penalty

8

A Computer System

Bus interface

ALU

Register file

CPU

PC

9

A Computer System

Main
memory

I/O
bridgeBus interface

ALU

Register file

CPU

System bus Memory bus

PC

10

A Computer System

Main
memory

I/O
bridgeBus interface

ALU

Register file

CPU

System bus Memory bus

Disk
controller

Graphics
adapter

USB
controller

Mouse Keyboard Display
Disk

I/O bus Expansion slots for
other devices such
as network adapters

hello executable
stored on disk

PC

11

A Computer System

Main
memory

I/O
bridgeBus interface

ALU

Register file

CPU

System bus Memory bus

Disk
controller

Graphics
adapter

USB
controller

Mouse Keyboard Display
Disk

I/O bus Expansion slots for
other devices such
as network adapters

hello executable
stored on disk

PC

12

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1985 1990 1995 2000 2003 2005 2010 2015

Ti
m

e
(n

s)

Year

The CPU-Memory Gap

13

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1985 1990 1995 2000 2003 2005 2010 2015

Ti
m

e
(n

s)

Year

DRAM

CPU

SSD

Disk

SRAM

Caching

• Keep some memory values nearby in fast memory

• Modern systems have 3 or even 4 levels of caches

• Cache idea is widely used:
• Disk controllers
• Webpage loading
• (Virtual memory: main memory is a “cache” for the disk)

14

Memory Hierarchy

15

Regs

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
and
cheaper
(per byte)
storage
devices

Remote secondary storage
(e.g., cloud, web servers)

Local disks hold files
retrieved from disks
on remote servers

L2 cache
(SRAM)

L1 cache holds cache lines retrieved
from the L2 cache.

CPU registers hold words retrieved from
the L1 cache.

L2 cache holds cache lines
retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and
costlier
(per byte)
storage
devices L3 cache

(SRAM)
L3 cache holds cache lines
retrieved from main memory.

L6:

Main memory holds
disk blocks retrieved
from local disks.

Latency numbers every programmer should
know (2020)

L1 cache reference

Branch mispredict

L2 cache reference

Main memory reference

Memory 1MB sequential read

SSD random read

SSD 1MB sequential read

Magnetic Disk seek

Magnetic Disk 1MB sequential read

Round trip in Datacenter

Round trip CA<->Europe

16

1 ns

3 ns

4 ns

100 ns

3,000 ns

16,000 ns

49,000 ns

2,000,000 ns

825,000 ns

500,000 ns

150,000,000 ns

3 μs

16 μs

49 μs

2 ms

825 μs

500 μs

150 ms

Caching Strategies

How should we decide which books to keep in the bookshelf?
Alternatively

How should we decide which books to evict from the bookshelf?

17

Example Access Patterns

Data references
• Reference array elements in succession.
• Reference variable sum each iteration.

Instruction references
• Reference instructions in sequence.
• Cycle through loop repeatedly.

18

int sum = 0;
for (int i = 0; i < n; i++){

sum += a[i];
}
return sum;

Example Access Patterns

19

Example Access Patterns

20

Example Access Patterns

21

Principle of Locality

Programs tend to use data and instructions with addresses near or
equal to those they have used recently

Temporal locality:
• Recently referenced items are likely

to be referenced again soon

Spatial locality:
• Items with nearby addresses tend

to be referenced close together in time

22

23

Direct-Mapped,
Inclusive Cache

64-Bytes Memory

8-Bit CPU

r1
r2

rsp
rip

ALU

24

Direct-Mapped,
Inclusive Cache

64-Bytes Memory

8-Bit CPU

r1
r2

rsp
rip

ALU

16-Bytes L2 Cache

4-Bytes L1 Cache

mov r1, [0x2]

25

Direct-Mapped,
Inclusive Cache

64-Bytes Memory

8-Bit CPU

r1
r2

rsp
rip

ALU

16-Bytes L2 Cache

4-Bytes L1 Cache

mov r1, [0x2]

26

Direct-Mapped,
Inclusive Cache

64-Bytes Memory

8-Bit CPU

r1
r2

rsp
rip

ALU

16-Bytes L2 Cache

4-Bytes L1 Cache

mov r1, [0x2]

27

Direct-Mapped,
Inclusive Cache

64-Bytes Memory

8-Bit CPU

r1
r2

rsp
rip

ALU

16-Bytes L2 Cache

4-Bytes L1 Cache

mov r1, [0x2]

28

Direct-Mapped,
Inclusive Cache

64-Bytes Memory

8-Bit CPU

r1
r2

rsp
rip

ALU

16-Bytes L2 Cache

4-Bytes L1 Cache

mov r1, [0x2]

29

Direct-Mapped,
Inclusive Cache

64-Bytes Memory

8-Bit CPU

r1
r2

rsp
rip

ALU

16-Bytes L2 Cache

4-Bytes L1 Cache

mov r1, [0x2]

30

Direct-Mapped,
Inclusive Cache

64-Bytes Memory

8-Bit CPU

r1
r2

rsp
rip

ALU

16-Bytes L2 Cache

4-Bytes L1 Cache

mov r1, [0x2]
mov r2, [0x4]

31

Direct-Mapped,
Inclusive Cache

64-Bytes Memory

8-Bit CPU

r1
r2

rsp
rip

ALU

16-Bytes L2 Cache

4-Bytes L1 Cache

mov r1, [0x2]
mov r2, [0x4]

32

Direct-Mapped,
Inclusive Cache

64-Bytes Memory

8-Bit CPU

r1
r2

rsp
rip

ALU

16-Bytes L2 Cache

4-Bytes L1 Cache

mov r1, [0x2]
mov r2, [0x4]

33

Direct-Mapped,
Inclusive Cache

64-Bytes Memory

8-Bit CPU

r1
r2

rsp
rip

ALU

16-Bytes L2 Cache

4-Bytes L1 Cache

mov r1, [0x2]
mov r2, [0x4]

34

Direct-Mapped,
Inclusive Cache

64-Bytes Memory

8-Bit CPU

r1
r2

rsp
rip

ALU

16-Bytes L2 Cache

4-Bytes L1 Cache

mov r1, [0x2]
mov r2, [0x4]

35

Direct-Mapped,
Inclusive Cache

64-Bytes Memory

8-Bit CPU

r1
r2

rsp
rip

ALU

16-Bytes L2 Cache

4-Bytes L1 Cache

mov r1, [0x2]
mov r2, [0x4]
add r1, r2

36

Direct-Mapped,
Inclusive Cache

64-Bytes Memory

8-Bit CPU

r1
r2

rsp
rip

ALU

16-Bytes L2 Cache

4-Bytes L1 Cache

mov r1, [0x2]
mov r2, [0x4]
add r1, r2

37

Direct-Mapped,
Inclusive Cache

64-Bytes Memory

8-Bit CPU

r1
r2

rsp
rip

ALU

16-Bytes L2 Cache

4-Bytes L1 Cache

mov r1, [0x2]
mov r2, [0x4]
add r1, r2

38

Direct-Mapped,
Inclusive Cache

64-Bytes Memory

8-Bit CPU

r1
r2

rsp
rip

ALU

16-Bytes L2 Cache

4-Bytes L1 Cache

mov r1, [0x2]
mov r2, [0x4]
add r1, r2

How do we know which value is in cache? Compare the tag.

Cache Lines

Data block: cached data (i.e., copy of bytes from memory)

Tag: uniquely identifies the data is stored in the cache line

Valid bit: indicates whether the line contains meaningful information

39

v

valid bit

tag

tag

0 1 2 73 654

data block

Single Cache Line:

Direct-mapped Cache

40

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

Step 1: find cache line
Step 4: grab data at offset

Address of data: tag offsetindex

rest
of th

e bits
log(#

 lin
es)

bits
log(b

lock
 siz

e) b
its

1. Use the address to find the cache line

2. Compare the tag (must match)

3. Check the valid bit (must be valid)

4. Grab data at offset into cache line

Do the first two steps sound familiar?

List of
Cache Lines

e.g., 0xFE 28 96 E7

Example: Direct-mapped Cache

Assume: cache block size 8 bytes
Assume: assume 8-bit machine

Address of data: ?

Line 0

Line 1

Line 2

Line 3

41

List of
Cache Lines

Address of data: tag offsetindex

How many bits in address?

1

1

1

0

Example: Direct-mapped Cache

Assume: cache block size 8 bytes
Assume: assume 8-bit machine

Address of data: 0xB4

3-bit t
ag

101

3-bit o
ffs

et

100

2-bit i
ndex

10

Line 0

Line 1

Line 2

Line 3

42

List of
Cache Lines

1011 0100

How many bits for the index?
How many bits for the offset?
How many bits for the tag?

Address of data: tag offsetindex

How many bits in address?

0D 00 00 0000 00002F

00 00 00 1D00 064000

0F 12 AB 6834 EAFFFF

00 11 22 7733 665544

101

001

110

001

1

1

1

0

Practice Interpreting Addresses

Consider the hex address 0xA59. What are the tag, index, and offset
for this address with each of the following cache configurations?

1. A direct-mapped cache with 8 cache lines and 8-byte data blocks

2. A direct-mapped cache with 16 cache lines and 4-byte data blocks

3. A direct-mapped cache with 16 cache lines and 8-byte data blocks

43

Practice Interpreting Addresses

Consider the hex address 0xA59. What are the tag, index, and offset
for this address with each of the following cache configurations?

1. A direct-mapped cache with 8 cache lines and 8-byte data blocks

2. A direct-mapped cache with 16 cache lines and 4-byte data blocks

3. A direct-mapped cache with 16 cache lines and 8-byte data blocks

44

1010 0101 1001

101001 011 001

Tag Index Offset

101001 0110 01

Tag Index Off

10100 1011 001

Tag Index Off

Practice with Cache Indices

You have an array of 6 ints (4-bytes) at address 0x601940. Direct-
mapped cache with 8 cache lines and 8-byte data blocks.
In which cache line would you find each of the 6 integers?

45

0x601940

Element Address Binary Address Index Offset
a[0]

a[1]

a[2]

a[3]

a[4]

a[5]

Practice with Cache Indices

You have an array of 6 ints (4-bytes) at address 0x601940. Direct-
mapped cache with 8 cache lines and 8-byte data blocks.
In which cache line would you find each of the 6 integers?

46

0x601940

Element Address Binary Address Index Offset
a[0]

a[1]

a[2]

a[3]

a[4]

a[5]

0x601940

0x601944

0x601948

0x60194c

0x601950

0x601954

… 0100 0000

… 0100 0100

… 0100 1000

… 0100 1100

… 0101 0000

… 0101 0100

000

000

001

001

010

010

000

100

000

100

000

100

How many bits for the offset?
How many bits for the index?

Line 0 Line 1 Line 2 Line 3

0 0000 47 0 0000 47 0 0000 47 0 0000 47

Practice with Direct-mapped Cache
Memory

0x14
0x10
0x0c
0x08
0x04
0x00

17

13

16
15
14

Cache

Access tag idx off h/m
rd 0x00

rd 0x04

rd 0x14

rd 0x00

rd 0x04

rd 0x14

18

Assume 4-byte data blocks

0000

47

00 00 m

How many bits for the offset?
How many bits for the index?

Binary
0000 0000

0000 0100

0001 0100

0000 0000

0000 0100

0001 0000

Time

Only showing updates to the cache.

Line 0 Line 1 Line 2 Line 3

0 0000 47 0 0000 47 0 0000 47 0 0000 47

1 0000 13

Practice with Direct-mapped Cache
Memory

0x14
0x10
0x0c
0x08
0x04
0x00

17

13

16
15
14

Cache

Access tag idx off h/m
rd 0x00

rd 0x04

rd 0x14

rd 0x00

rd 0x04

rd 0x14

18

Assume 4-byte data blocks

0000

48

00 00 m

Binary
0000 0000

0000 0100

0001 0100

0000 0000

0000 0100

0001 0000

Time

Only showing updates to the cache.

Line 0 Line 1 Line 2 Line 3

0 0000 47 0 0000 47 0 0000 47 0 0000 47

1 0000 13

Practice with Direct-mapped Cache
Memory

0x14
0x10
0x0c
0x08
0x04
0x00

17

13

16
15
14

Cache

Access tag idx off h/m
rd 0x00

rd 0x04

rd 0x14

rd 0x00

rd 0x04

rd 0x14

18

Assume 4-byte data blocks

0000

49

00 00 m

0000 01 00 m

0001 01 00 m
0000 00 00 h

0000 01 00 m

0001 01 00 m

1 0000 14

1 0001 18

1 0000 14

1 0001 18

Binary
0000 0000

0000 0100

0001 0100

0000 0000

0000 0100

0001 0000

Time

Only showing updates to the cache.

Line 0 Line 1

0 0000 47 48 0 0000 47 48

More Practice with Direct-mapped Cache
Cache

Assume 8-byte data blocks

18
Memory

0x14
0x10
0x0c
0x08
0x04
0x00

17

13

16
15
14

Access tag idx off h/m

rd 0x00

rd 0x04

rd 0x14

rd 0x00

rd 0x04

rd 0x14
50

Time

Same memory
and same code

Line 0 Line 1

0 0000 47 48 0 0000 47 48

More Practice with Direct-mapped Cache
Cache

Assume 8-byte data blocks

18
Memory

0x14
0x10
0x0c
0x08
0x04
0x00

17

13

16
15
14

Access tag idx off h/m

rd 0x00

rd 0x04

rd 0x14

rd 0x00

rd 0x04

rd 0x14
51

0000 0 000 m

0000 0 100 h

0001 0 100 m

0000 0 000 m

0000 0 000 h

0001 0 000 m

1 0000 13 14

1 0001 17 18

1 0000 13 14

1 0001 17 18

Time

Same memory
and same code

Line 0 Line 1

0 0000 47 48 0 0000 47 48

More Practice with Direct-mapped Cache
Cache

Assume 8-byte data blocks

18
Memory

0x14
0x10
0x0c
0x08
0x04
0x00

17

13

16
15
14

Access tag idx off h/m

rd 0x00

rd 0x04

rd 0x14

rd 0x00

rd 0x04

rd 0x14
52

0000 0 000 m

0000 0 100 h

0001 0 100 m

0000 0 000 m

0000 0 000 h

0001 0 000 m

1 0000 13 14

1 0001 17 18

1 0000 13 14

1 0001 17 18

How well does this take advantage of
spacial locality?

How well does this take advantage of
temporal locality?

Same memory
and same code

Time

Alignment

• Modern process mostly allow unaligned data access
• Unaligned access: an n-byte piece of data with an address not

divisible by n
• But most system programming languages still align all data for

performance reasons (it matters less now than it used to)

53

struct data {
u32 field1;
u64 field2;
u16 field3;

};

field1

field2

64-bits wide

field3

Alignment

• Modern process mostly allow unaligned data access
• Unaligned access: an n-byte piece of data with an address not

divisible by n
• But most system programming languages still align all data for

performance reasons (it matters less now than it used to)

54

struct data {
u32 field1;
u16 field3;
u64 field2;

};

field1

field2

64-bits wide

field3

55

field1

field2

64-bits wide

field3

field1

field2

64-bits wide

field3

field1

field2

field3

field1

field2

field3

field1

field2

field3

field1

field2

field3

field1

field2

field3

field1

field2

field3

field1

field2

field3

field1

field2

field3

Cache and Alignment

Assume: cache block size 8 bytes
Assume: assume 8-bit machine

Address of data: 0xB4

3-bit t
ag

101

3-bit o
ffs

et

100

2-bit i
ndex

10

Line 0

Line 1

Line 2

Line 3

56

List of
Cache Lines

1011 0100

How many bits for the index?
How many bits for the offset?
How many bits for the tag?

Address of data: tag offsetindex

How many bits in address?

0D 00 00 0000 00002F

00 00 00 1D00 064000

0F 12 AB 6834 EAFFFF

00 11 22 7733 665544

101

001

110

001

1

1

1

0

field1

field2

f3

Cache and Alignment

Assume: cache block size 8 bytes
Assume: assume 8-bit machine

Address of data: 0xB4

3-bit t
ag

101

3-bit o
ffs

et

100

2-bit i
ndex

10

Line 0

Line 1

Line 2

Line 3

57

List of
Cache Lines

1011 0100

How many bits for the index?
How many bits for the offset?
How many bits for the tag?

Address of data: tag offsetindex

How many bits in address?

0D 00 00 0000 00002F

00 00 00 1D00 064000

0F 12 AB 6834 EAFFFF

00 11 22 7733 665544

101

001

110

001

1

1

1

0

field1

field2…

f3…field2

