
Drawing: Return Oriented Programming

• Take three minutes to draw something related to “ROP”

• Some reminders
• Stack smashing
• Gadgets
• Memory segments

1

2

Dynamic Memory

3

Memory

• Byte addressable array made up of four logical segments

• Stack provides local storage for procedures

• Heap is an area of memory maintained by a dynamic
memory allocator (operating system maintains variable
brk that points to the top of heap)

• Data stores global variables

• Code stores program instructions

• Attempt to access uninitialized addresses result in
exceptions (segfault)

Stack

0x7FFFFFFFFFFF

rsp

0x000000000000

Data

Code

Heap

rip

brk

4

The Heap

• The heap is an area of memory for dynamic
memory allocation

• Programmers can use a dynamic memory
allocator to acquire additional memory at
run time

• Programmers can use a system call to
modify brk (but you should really just use
malloc when programming in C)

5

Stack

0x7FFFFFFFFFFF

rsp

0x000000000000

Data

Code

Heap

rip

brk

Dynamic Memory Allocation

Dynamic memory allocator
• Manages the heap

• organizes the heap as a collection of (variable-size) blocks, each of which is either allocated or free
• allocates and deallocates memory
• may ask OS for additional heap space using system call sbrk()

• Part of the process’s runtime system
• Linked into program

Example dynamic memory allocators
• malloc and free in C
• new and delete in C++
• object creation & garbage collection in Java
• object creation & garbage collection in Python

6

explicit allocators

implicit allocators

#include <stdio.h>
#include <stdlib.h>

void foo(int n) {
int i, *p;

/* Allocate a block of n ints */
p = (int *) malloc(n * sizeof(int));
if (p == NULL) {

perror("malloc");
exit(0);

}

/* Initialize allocated block */
for (i = 0; i < n; i++)

p[i] = i;

/* Return allocated block to the heap */
free(p);

}

Allocation Example using malloc

7

Allocation Example

8

p1 = malloc(4)

Allocation Example

9

p1 = malloc(4)

p2 = malloc(5)

Allocation Example

10

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

Allocation Example

11

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

Allocation Example

12

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

Allocation Example

13

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

Allocator Requirements

1. Must handle arbitrary request sequences: cannot control number, size, or
order of requests

2. Must respond immediately: no reordering or buffering requests

3. Must not modify allocated blocks: cannot modify or move blocks once they are
allocated

4. Must align blocks: ensures that allocated blocks can hold any type of data

5. Must only use the heap: any helper data structures must be stored in the heap

14

First Example: A Simple Allocator

15

void *malloc (size_t size) {
return sbrk(align(size));

}

void free (void *ptr) {
// do nothing

}

Advantages
• Simple
• Blazing fast

Disadvantages
• Memory is never recycled
• Wastes a lot of space

Allocator Goals

High Throughput: number of requests completed per time unit
• Make the allocator fast
• Example: if your allocator processes 5,000 malloc calls and 5,000 free

calls in 10 seconds then throughput is 1,000 operations/second

High Memory Utilization: fraction of heap memory allocated
• Minimize wasted space
• Maximize Peak Memory Utilization

16

𝑈! =
max
"#!

𝑠𝑝𝑎𝑐𝑒 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑖

𝑠𝑖𝑧𝑒 𝑜𝑓 ℎ𝑒𝑎𝑝 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

Practice with Memory Utilization

• What is the Peak Memory Utilization at time 𝑡 = 2?
• What is the Peak Memory Utilization at time 𝑡 = 5?

17

𝑡 = 0

𝑡 = 1

𝑡 = 2

𝑡 = 3

𝑡 = 4

𝑡 = 5

𝑈! =
max
"#!

𝑠𝑝𝑎𝑐𝑒 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑖

𝑠𝑖𝑧𝑒 𝑜𝑓 ℎ𝑒𝑎𝑝 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

Practice with Memory Utilization

• What is the Peak Memory Utilization at time 𝑡 = 2?
• What is the Peak Memory Utilization at time 𝑡 = 5?

18

𝑡 = 0

𝑡 = 1

𝑡 = 2

𝑡 = 3

𝑡 = 4

𝑡 = 5

𝑈! =
max
"#!

𝑠𝑝𝑎𝑐𝑒 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑖

𝑠𝑖𝑧𝑒 𝑜𝑓 ℎ𝑒𝑎𝑝 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

𝟑/𝟒
𝟓/𝟖

Allocator Goals

High Throughput: number of requests completed per time unit
• Make the allocator fast
• Example: if your allocator processes 5,000 malloc calls and 5,000 free

calls in 10 seconds then throughput is 1,000 operations/second

High Memory Utilization: fraction of heap memory allocated
• Minimize wasted space
• Maximize Peak Memory Utilization

19

𝑈! =
max
"#!

𝑠𝑝𝑎𝑐𝑒 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑖

𝑠𝑖𝑧𝑒 𝑜𝑓 ℎ𝑒𝑎𝑝 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

These goals are often
conflicting

Utilization Blocker: Internal Fragmentation

For a given block, internal fragmentation occurs if the payload is smaller than the size of the block

Caused by
• Overhead of maintaining heap data structures
• Padding for alignment purposes
• Explicit policy decisions (for example, returning a big block to satisfy a small request)

Depends only on the pattern of previous requests and is easy to measure

20

Payload Internal
fragmentation

Block

Internal
fragmentation

Utilization Blocker: External Fragmentation

Occurs when there is enough aggregate heap memory, but no single free
block is large enough

• Depends on the pattern of future requests and is difficult to predict

21

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

Utilization Blocker: External Fragmentation

Occurs when there is enough aggregate heap memory, but no single free
block is large enough

• Depends on the pattern of future requests and is difficult to predict

22

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6)

Practice with Utilization

• Assume your heap is initially of size zero and you then run the
following sequence of requests using the given allocator on a system
with 4-byte alignment (all pointers start at a multiple of 4 address).
• What is the peak memory utilization after you complete the last

request?

23

void *malloc (size_t size) {
return sbrk(align(size));

}

void free (void *ptr) {
// do nothing

}

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

𝑈! =
max
"#!

𝑠𝑝𝑎𝑐𝑒 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑖

𝑠𝑖𝑧𝑒 𝑜𝑓 ℎ𝑒𝑎𝑝 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

Practice with Utilization

24

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

𝑈! =
max
"#!

𝑠𝑝𝑎𝑐𝑒 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑖

𝑠𝑖𝑧𝑒 𝑜𝑓 ℎ𝑒𝑎𝑝 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

𝑈$ =
4
4

𝑈% =
9
12 =

3
4

𝑈& =
15
20 =

3
4

𝑈' =
15
20

=
3
4

𝑈(=
15
24 =

5
8

Challenges

Goal: maximize throughput and peak memory
utilization

Implementation challenges:
• How do we know how much memory to free given just a pointer?
• How do we keep track of the free blocks?
• How do we pick a block to use for allocation?
• What do we do with the extra space when allocating a structure that is

smaller than the free block it is placed in?
• How do we reinsert a freed block?

25

void *malloc (size_t size) {
return sbrk(align(size));

}

void free (void *ptr) {
// do nothing

}

Challenges

Goal: maximize throughput and peak memory
utilization

Implementation challenges:
• How do we know how much memory to free given just a pointer?
• How do we keep track of the free blocks?
• How do we pick a block to use for allocation?
• What do we do with the extra space when allocating a structure that is

smaller than the free block it is placed in?
• How do we reinsert a freed block?

26

void *malloc (size_t size) {
return sbrk(align(size));

}

void free (void *ptr) {
// do nothing

}

Knowing How Much to Free

Standard method
• Keep the length of a block in the word preceding the block.

• This word is often called the header field or header

• Requires an extra word (e.g., 4 byte integer) for every allocated block

27
free(p0)

p0

p0 = malloc(16) 20

header payload

Why the preceding block?
Why not have the pointer point to the header?

Challenges

Goal: maximize throughput and peak memory
utilization

Implementation challenges:
• How do we know how much memory to free given just a pointer?
• How do we keep track of the free blocks?
• How do we pick a block to use for allocation?
• What do we do with the extra space when allocating a structure that is

smaller than the free block it is placed in?
• How do we reinsert a freed block?

28

void *malloc (size_t size) {
return sbrk(align(size));

}

void free (void *ptr) {
// do nothing

}

Challenges

Goal: maximize throughput and peak memory
utilization

Implementation challenges:
• How do we know how much memory to free given just a pointer?
• How do we keep track of the free blocks?
• How do we pick a block to use for allocation?
• What do we do with the extra space when allocating a structure that is

smaller than the free block it is placed in?
• How do we reinsert a freed block?

29

void *malloc (size_t size) {
return sbrk(align(size));

}

void free (void *ptr) {
// do nothing

}

Keeping Track of Free Blocks

• Method 1: Implicit list using length—links all blocks

30

20 16 824

Method 1: Implicit List

For each block we need both size and allocation
status
• Could store this information in two words (one

word for the size; one word for the status), but
this is needlessly wasteful!

Standard trick
• If blocks are aligned, some low-order address

bits are always 0
• Instead of storing an always-0 bit, use it as a

allocated/free flag
• When reading size word, must mask out this bit

31

Address (Hex) Address (Binary
00 0000 0000

04 0000 0100

08 0000 1000

0C 0000 1100

10 0001 0000

14 0001 0100

18 0001 1000

1C 0001 1100

20 0010 0000

Method 1: Implicit List

For each block we need both size and allocation
status
• Could store this information in two words (one

word for the size; one word for the status), but
this is needlessly wasteful!

Standard trick
• If blocks are aligned, some low-order address

bits are always 0
• Instead of storing an always-0 bit, use it as a

allocated/free flag
• When reading size word, must mask out this bit

32

Address (Hex) Address (Binary
00 0000 0000

04 0000 0100

08 0000 1000

0C 0000 1100

10 0001 0000

14 0001 0100

18 0001 1000

1C 0001 1100

20 0010 0000

Method 1: Implicit List

For each block we need both size and allocation
status
• Could store this information in two words (one

word for the size; one word for the status), but
this is needlessly wasteful!

Standard trick
• If blocks are aligned, some low-order address

bits are always 0
• Instead of storing an always-0 bit, use it as a

allocated/free flag
• When reading size word, must mask out this bit

33

Size

4 bytes

Format of
allocated and
free blocks

Payload

a = 1: Allocated block
a = 0: Free block

Size: block size

Payload: application data
(allocated blocks only)

a

Optional
padding

Detailed Implicit Free List Example

Start
of

heap

4-byte words
8-byte aligned

8/0 16/1 16/132/0

Unused

0/1

Allocated blocks: shaded
Free blocks: unshaded
Headers: labeled with size in bytes/allocated bit

34

Practice with Block Headers

Determine the block sizes and header values that would result from the
following sequence of malloc requests. Assume that the allocator uses
an implicit list implementation with the block format just described and
maintains 8-byte alignment.

35

Request Block size (decimal) Block header (hex)
malloc(1)

malloc(5)

malloc(12)

Size

4 bytes

Payload

a

Optional
padding

Header
+ Payload
+ Padding Size and Status

Practice with Block Headers

Determine the block sizes and header values that would result from the
following sequence of malloc requests. Assume that the allocator uses
an implicit list implementation with the block format just described and
maintains 8-byte alignment.

36

Request Block size (decimal) Block header (hex)
malloc(1)

malloc(5)

malloc(12)

Size

4 bytes

Payload

a

Optional
padding

8 00 00 00 09

16 00 00 00 11

16 00 00 00 11

Header
+ Payload
+ Padding Size and Status

Keeping Track of Free Blocks
Method 1: Implicit list using length—links all blocks

Method 2: Explicit list among the free blocks using pointers

Method 3: Segregated free list
• Different free lists for different size classes

Method 4: Blocks sorted by size
• Can use a balanced tree (e.g., Red-Black tree) with pointers within each free block, and the length used as a key

37

5 4 26

5 4 26

Challenges

Goal: maximize throughput and peak memory
utilization

Implementation challenges:
• How do we know how much memory to free given just a pointer?
• How do we keep track of the free blocks?
• How do we pick a block to use for allocation?
• What do we do with the extra space when allocating a structure that is

smaller than the free block it is placed in?
• How do we reinsert a freed block?

38

void *malloc (size_t size) {
return sbrk(align(size));

}

void free (void *ptr) {
// do nothing

}

Challenges

Goal: maximize throughput and peak memory
utilization

Implementation challenges:
• How do we know how much memory to free given just a pointer?
• How do we keep track of the free blocks?
• How do we pick a block to use for allocation?
• What do we do with the extra space when allocating a structure that is

smaller than the free block it is placed in?
• How do we reinsert a freed block?

39

void *malloc (size_t size) {
return sbrk(align(size));

}

void free (void *ptr) {
// do nothing

}

Implicit List: Finding a Free Block

First fit. Search list from beginning, choose first free block that fits:
• Can take linear time in total number of blocks (allocated and free)
• In practice it can cause fragmentation at the beginning

Next fit. Like first fit, but search list starting where previous search finished:
• Should often be faster than first fit: avoids re-scanning unhelpful blocks
• Some research suggests that fragmentation is worse

Best fit. Search the list, choose the best free block: fits, with fewest bytes left over:
• Keeps fragments small—usually improves memory utilization
• Will typically run slower than first fit

40

p = start;
while ((p < end) && ((*p & 1) || (*p <= len)))
p = p + (*p & -2);

Challenges

Goal: maximize throughput and peak memory
utilization

Implementation challenges:
• How do we know how much memory to free given just a pointer?
• How do we keep track of the free blocks?
• How do we pick a block to use for allocation?
• What do we do with the extra space when allocating a structure that is

smaller than the free block it is placed in?
• How do we reinsert a freed block?

41

void *malloc (size_t size) {
return sbrk(align(size));

}

void free (void *ptr) {
// do nothing

}

Challenges

Goal: maximize throughput and peak memory
utilization

Implementation challenges:
• How do we know how much memory to free given just a pointer?
• How do we keep track of the free blocks?
• How do we pick a block to use for allocation?
• What do we do with the extra space when allocating a structure that is

smaller than the free block it is placed in?
• How do we reinsert a freed block?

42

void *malloc (size_t size) {
return sbrk(align(size));

}

void free (void *ptr) {
// do nothing

}

Implicit List: Allocating in Free Block

• Allocating in a free block: splitting
• Since allocated space might be smaller than free space, we might want to split

the block

43

void addblock(ptr p, int len) {
int newsize = ((len + 1) >> 1) << 1;
int oldsize = *p & -2;
*p = newsize | 1;
if (newsize < oldsize)

*(p+newsize) = oldsize - newsize;
}

16 17 924

p

17 917 816

// utility function used by malloc
addblock(p, 4);

// round up to even
// mask out low bit
// set new length

// set length in remaining
// part of block

Challenges

Goal: maximize throughput and peak memory
utilization

Implementation challenges:
• How do we know how much memory to free given just a pointer?
• How do we keep track of the free blocks?
• How do we pick a block to use for allocation?
• What do we do with the extra space when allocating a structure that is

smaller than the free block it is placed in?
• How do we reinsert a freed block?

44

void *malloc (size_t size) {
return sbrk(align(size));

}

void free (void *ptr) {
// do nothing

}

Challenges

Goal: maximize throughput and peak memory
utilization

Implementation challenges:
• How do we know how much memory to free given just a pointer?
• How do we keep track of the free blocks?
• How do we pick a block to use for allocation?
• What do we do with the extra space when allocating a structure that is

smaller than the free block it is placed in?
• How do we reinsert a freed block?

45

void *malloc (size_t size) {
return sbrk(align(size));

}

void free (void *ptr) {
// do nothing

}

Implicit List: Freeing a Block

• Simplest implementation:
• Need only clear the “allocated” flag

• void free_block(ptr p) { *p = *p & -2 }

• But can lead to “false fragmentation”

46

17 917 816

free(p) p

16 17 916 8

malloc(20)Oops!

There is enough free space, but the allocator won’t be able to find it

Implicit List: Coalescing

• Join (coalesce) with next/previous blocks, if they are free

47

free(p) p

17 917 816

16 17 924 8

logically
gone

But how do we coalesce
with previous block?

void free_block(ptr p) {
*p = *p & -2; // clear allocated flag

ptr next = p + *p; // find next block

if ((*next & 1) == 0) // add to this block if
*p = *p + *next; // not allocated

}

Implicit List: Bidirectional Coalescing

• Boundary
• Replicate size/allocated word at “bottom” (end) of free blocks
• Allows us to traverse the “list” backwards, but requires extra space

48

Size

Format of
allocated and
free blocks

Payload and
padding

a = 1: Allocated block
a = 0: Free block

Size: Total block size

Payload: Application data
(allocated blocks only)

a

Size aBoundary tag
(footer)

16 16 17 17 24 1724 17

Header

Constant-Time Coalescing
Case 2: Block above allocated, block below freeCase 1: Blocks above and below allocated

Case 3: Block above free, block below allocated Case 4: Blocks above and below free

49

Constant-Time Coalescing
Case 2: Block above allocated, block below freeCase 1: Blocks above and below allocated

Case 3: Block above free, block below allocated Case 4: Blocks above and below free

50

Will we ever need to
coalesce with blocks

above or below adjacent
blocks?

0x0000000c

0x0000000d

Practice with Coalescing

Assume the current state of
the heap is shown. What is
the state of the heap after a
call “free(0x114)” is
executed?

0x00000009

0x5ca1ab1e

0x00000011

0xdeadcafe

0x0000000d

0x0000000c

0x00000047

0x000000110x100

0x104

0x108

0x10c

0x110

0x114

0x118

0x11c

0x120

0x124

51

0x0000000c

0x0000000d

Practice with Coalescing

Assume the current state of
the heap is shown. What is
the state of the heap after a
call “free(0x114)” is
executed?

0x00000009

0x5ca1ab1e

0x00000011

0xdeadcafe

0x0000000d

0x0000000c

0x00000047

0x000000110x100

0x104

0x108

0x10c

0x110

0x114

0x118

0x11c

0x120

0x124

52

current block (allocated)

following block (free)

previous block (allocated)

0x00000018

0x00000018

Practice with Coalescing

Assume the current state of
the heap is shown. What is
the state of the heap after a
call “free(0x114)” is
executed?

0x00000009

0x5ca1ab1e

0x00000011

0xdeadcafe

0x0000000d

0x0000000c

0x00000047

0x000000110x100

0x104

0x108

0x10c

0x110

0x114

0x118

0x11c

0x120

0x124

previous block (allocated)

current block (allocated)

following block (free)

53

Challenges

Goal: maximize throughput and peak memory
utilization

Implementation challenges:
• How do we know how much memory to free given just a pointer?
• How do we keep track of the free blocks?
• How do we pick a block to use for allocation?
• What do we do with the extra space when allocating a structure that is

smaller than the free block it is placed in?
• How do we reinsert a freed block?

54

void *malloc (size_t size) {
return sbrk(align(size));

}

void free (void *ptr) {
// do nothing

}

Summary of Key Allocator Policies

Storage policy:
• What data structure will you use to keep

track of the free blocks?

Placement policy:
• First-fit, next-fit, best-fit, etc.
• Trades off lower throughput for less

fragmentation
• Segregated free lists approximate a best fit

placement policy without having to search
entire free list

Splitting policy:
• When do we go ahead and split free

blocks?
• How much internal fragmentation are we

willing to tolerate?

Coalescing policy:
• Immediate coalescing: coalesce each time

free is called
• Deferred coalescing: try to improve

performance of free by deferring
coalescing until needed. Examples:
• Coalesce as you scan the free list for malloc
• Coalesce when the amount of external

fragmentation reaches some threshold

55

Memory-Related Perils and Pitfalls

• Dereferencing bad pointers

• Reading uninitialized memory

• Overreading memory

• Overwriting memory

• Referencing freed blocks

• Freeing blocks multiple times

• Failing to free blocks

56

(Correctness)

(Correctness)

(Security)

(Security)

(Security)

(Security)

(Performance)

Tools for Dealing With Memory Bugs

• Debugger: gdb
• Good for finding bad pointer dereferences
• Hard to detect the other memory bugs

• Heap consistency checker (e.g., mcheck)
• Usually run silently, printing message only on error
• Can be used to detect overreads, double-free
• glibc malloc contains checking code

• setenv MALLOC_CHECK_ 3

• Binary translator: valgrind
• Powerful debugging and analysis technique
• Rewrites text section of executable object file
• Checks each individual reference at runtime

• Bad pointers, overwrites, refs outside of allocated block

57

Memory Bugs Persist…
Apr 2020 Feb 2020

Mar 2020 Oct 2019

58

Implicit Allocators

59

Implicit Allocators: Garbage Collection

• Garbage collection: automatic reclamation of heap-allocated storage—
application never has to free

• Common in many dynamic languages:
• Python, Java, Ruby, Perl, ML, Lisp, Mathematica

• Variants (“conservative” garbage collectors) exist for C and C++
• However, cannot necessarily collect all garbage

60

void foo() {
int *p = malloc(128);
return; /* p block is now garbage */

}

Garbage Collection

• How does the memory manager know when memory can be freed?
• In general we cannot know what is going to be used in the future since it

depends on conditionals
• But we can tell certain blocks cannot be used if there are no pointers to them

• Must make certain assumptions about pointers
• Memory manager can distinguish pointers from non-pointers
• All pointers point to the start of a block
• Cannot hide pointers (e.g., by coercing them to an long, and then back again)

61

Memory as a Graph

• We view memory as a directed graph
• Each block is a node in the graph (called a heap node)
• Extra root nodes correspond to locations not in the heap that contain pointers

into the heap
• registers, local stack variables, or global variables

• Each pointer is an edge in the graph

62

Root nodes

Heap nodes

Memory as a Graph

• A node is reachable if there exists a directed path from some root
node to the node
• Unreachable heap nodes are garbage
• they can never again be used by the application
• they should be freed ("garbage collected")

Root nodes

Heap nodes
Not-reachable
(garbage)

reachable

63

Garbage Collection

• The role of a garbage collector is
• to maintain some representation of the reachability graph
• to reclaim the unreachable nodes by freeing them

• this can happen periodically, or collector can run in parallel with application)

• Languages that maintain tight control over how applications create
and use pointers (e.g., Java, Python, OCaml) can maintain an exact
representation of the graph

• Garbage collectors for languages like C/C++ will be conservative

64

Heap nodes

Practice Garbage Collection

• Consider the following graph representation of memory. Which nodes
correspond to blocks that should be freed by the garbage collector?

A B

C D E

G H J K

F

I

Root nodes

65

Classical GC Algorithms

• Mark-and-sweep collection (McCarthy, 1960)
• Does not move blocks (unless you also “compact”)

• Reference counting (Collins, 1960)
• Does not move blocks

• Copying collection (Minsky, 1963)
• Moves blocks

• Generational Collectors (Lieberman and Hewitt, 1983)
• Collection based on lifetimes

• Most allocations become garbage very soon
• So focus reclamation work on zones of memory recently allocated

66

Mark and Sweep Collector

Each block header has an extra mark bit (can use spare low-order bits)
• Two phase protocol

1. Mark: Start at roots and set mark bit on each reachable block
2. Sweep: Scan all blocks and free blocks that are not marked

root

Before mark

Note: arrows
here denote

memory refs, not
an implicit list of

blocks.

After mark Mark bit set

After sweep freefree
67

Mark and Sweep Collector

ptr mark(ptr p) {
if (!is_ptr(p)) return; // do nothing if not pointer
if (markBitSet(p)) return; // check if already marked
setMarkBit(p); // set the mark bit
for (i=0; i < length(p); i++) // call mark on all words

mark(p[i]); // in the block
return;

}

Mark using depth-first traversal of the memory graph

Sweep using lengths to find next block
ptr sweep(ptr p, ptr end) {

while (p < end) {
if markBitSet(p)

clearMarkBit();
else if (allocateBitSet(p))

free(p);
p += length(p);

} 68

