
CS105 – Computer Systems Spring 2021

Problem Session 6: Dynamic Memory

SOLUTION
Wednesday, March 3, 202!

1. Consider an allocator that uses an implicit free list. Assume that all blocks (both allocated and free)
contain at 32-bit header and a 32-bit footer. Assume that each block has a total size (including header
and footer) that is a multiple of 8 bytes, thus only the 29 higher order bits in the header and footer are
needed to record block size. The usage of the remaining 3 lower order bits is as follows:

• bit 0 indicates the use of the current block: 1 for allocated, 0 for free.

• bit 1 indicates the use of the previous adjacent block: 1 for allocated, 0 for free.

• bit 2 is unused and is always set to be 0.

Given the contents of the heap shown on the left, show the new contents of the heap (in the right
table) after a call to free(0x400b010) is executed. Your answers should be given as hex values.
Note that the address grows from bottom up. Assume that the allocator uses immediate coalescing,
that is, adjacent free blocks are merged immediately each time a block is freed.

Address

0x400b028 0x00000012

0x400b024 0x400b611c

0x400b020 0x400b512c

0x400b01c 0x00000012

0x400b018 0x00000013

0x400b014 0x400b511c

0x400b010 0x400b601c

0x400b00c 0x00000013

0x400b008 0x00000013

0x400b004 0x400b601c

0x400b000 0x400b511c

0x400affc 0x00000013

Address

0x400b028 0x00000022

0x400b024 0x400b611c

0x400b020 0x400b512c

0x400b01c 0x00000012

0x400b018 0x00000013

0x400b014 0x400b511c

0x400b010 0x400b601c

0x400b00c 0x00000022

0x400b008 0x00000013

0x400b004 0x400b601c

0x400b000 0x400b511c

0x400affc 0x00000013

6-1



2. Assume you are running on the same system as in the previous problem. Five helper routines are
defined to facilitate the implementation of free(void *p). The functionality of each routine is
explained in the comment above the function definition. Fill in the body of the helper routines the
code section label that implement the corresponding functionality correctly.

/* given a pointer p to an allocated block, i.e., p is a pointer returned by some

previous malloc() call; returns the pointer to the header of the block */

void * header(void * p){

void *ptr;

_______;

return ptr;

}

A. ptr=p-1

B. ptr=(void *)((int *)p-1)

C. ptr=(void *)((int *)p-4)

B. The address of the header is 4 bytes before the address of the payload; casting to an int * means that
subtracting 1 decrements the value by 4 bytes.

/* given a pointer to a valid block header, returns the size of the block */

int size(void *hp){

int result;

_______;

return result;

}

A. result=(*hp)&(~7)

B. result=((*(char *)hp)&(~5))<<2

C. result=(*(int *)hp)&(~7)

C. Need to cast from a generic pointer to a typed pointr before dereferencing.

/* given a pointer p to an allocated block,i.e. p is a pointer returned by some

previous malloc() call; returns the pointer to the footer of the block */

void * footer(void * p){

void *ptr;

_______;

return ptr;

}

A. ptr=p+size(header(p))-8

B. ptr=p+size(header(p))-4

C. ptr=(int *)p+size(header(p))-2

A. Subtract 4 to get to the beginning of the header, add size to get to the end of the footer, subtract
another 4 to get to the beginning of the footer.

6-2



/* given a pointer to a valid block header, returns the usage of the currect block,

1 for allocated, 0 for free */

int allocated(void * hp){

int result;

______;

return result;

}

A. result=(*(int *)hp)&1

B. result=(*(int *hp)&0

C. result=(*(int *)hp)|1

A. &1 masks outall but the last bit of the header value.

/* given a pointer to a valid block header, returns the pointer to the header of

previous block in memory */

void * prev(void *hp){

void *ptr;

______;

return ptr;

}

A. ptr = hp - size(hp)

B. ptr = hp - size(hp-4)

C. ptr = hp - size(hp-4) + 4

B. hp-4 gives a pointer to the footer of the previous block, so size(hp-4) is the size of the previous
block. hp points to the beginning of the current block aka the end of the previous block, so subtracting
the size of the previous block gives a pointer to the previous block.

6-3


