Lecture 19: Virtual Memory

CS 105

Virtual Memory Goals

- Isolation: don't want different process states collided in physical memory
- Efficiency: want fast reads/writes to memory
- Sharing: want option to overlap for communication
- Utilization: want best use of limited resource
- Virtualization: want to create illusion of more resources

Process View vs. OS View

Address Translation

Possibilities

Let's look at some good and bad possibilities

- Base-and-bound
- Segmentation
- Paging

Base-and-Bound

Base-and-Bound

Exercise 1: Base-and-Bound

Assume that you are currently executing a process P with Base 0x1234 and Bound 0x100.

- What is the physical address that corresponds to the virtual address 0x47?
- What is the physical address that corresponds to the virtual address 0x123?

Exercise 1: Base-and-Bound

Assume that you are currently executing a process P with Base 0x1234 and Bound 0x100.

 What is the physical address that corresponds to the virtual address 0x47?

0x127b

 What is the physical address that corresponds to the virtual address 0x123?

invalid

Evaluating Base-and-Bound

 Isolation: don't want different process states collided in physical memory

 Efficiency: want fast reads/writes to memory

 Sharing: want option to overlap for communication

 Utilization: want best use of limited resource

 Virtualization: want to create illusion of more resources

Segmentation

Segmentation

Exercise 2: Segmentation

Assume that you are currently executing a process P with the following segment table:

Base	Bound	Access
0x4747	0x080	R,W
0x2424	0x040	R,W
0x0023	0x080	R,W
0x1000	0x200	R,X

- What is the physical address that corresponds to the virtual address 0x001?
- What is the physical address that corresponds to the virtual address 0xD47?

Exercise 2: Segmentation

Assume that you are currently executing a process P with the following segment table:

Base	Bound	Access
0x4747	0x080	R,W
0x2424	0x040	R,W
0x0023	0x080	R,W
0x1000	0x200	R,X

- What is the physical address that corresponds to the virtual address 0×001 ?

 | 00 | 000000001 | 0x4748
- What is the physical address that corresponds to the virtual address $0 \times D47$? 11 0101000111 0x1147

Evaluating Segmentation

 Isolation: don't want different process states collided in physical memory

 Efficiency: want fast reads/writes to memory

 Sharing: want option to overlap for communication

 Utilization: want best use of limited resource

 Virtualization: want to create illusion of more resources

Paging

Exercise 3: Paging

Assume that you are currently executing a process P with the following page table on a system with 16-byte pages:

:	Frame	Access
0x17	0x47	R,W
0x16	0xF4	R,W
0x15	NULL	R,W
0x14	0x23	R,X
:		

- What is the physical address that corresponds to the virtual address 0x147?
- What is the physical address that corresponds to the virtual address 0x16E?

Exercise 3: Paging

Assume that you are currently executing a process P with the following page table on a system with 16-byte pages:

:	Frame	Access
0x17	0x47	R,W
0x16	0xF4	R,W
0x15	NULL	R,W
0x14	0x23	R,X
÷		

- What is the physical address that corresponds to the virtual address 0×147 ? 00010100 0111 0x237
- What is the physical address that corresponds to the virtual address $0 \times 16E$? | 00010110 | 1110 | 0xF4E

Exercise 3: Paging

Assume that you are currently executing a process P with the following page table on a system with 16-byte pages:

:	Frame	Access
0x17	0x47	R,W
0x16	0xF4	R,W
0x15	NULL	R,W
0x14	0x23	R,X
:		

 $0x147 \rightarrow 0x237$

Memory as a Cache

- Each page table entry has a valid bit
- For valid entries, frame indicates physical address of page in memory
- A page fault occurs when a program requests a page that is not currently in memory
 - takes time to handle, so context switch
 - evict another page in memory to make space (which one?)

MMU				
	V	Frame	Access	
	1	47	R,W	
	0	NULL	R,W	
	0	13	R,W	
	1	42	R,X	

Thrashing

- Working set is the collection of a pages a process requires in a given time interval
- If the working set doesn't fit in memory, then the program will thrash
- There are no OS solutions to this problem

Exercise 4: Paging

Assume that you are currently executing a process P with the following page table on a system with 256-byte pages:

÷	V	Frame	Access
0xFA	1	0x47	R,W
0xF9	1	0x24	R,W
0xF8	0	NULL	R,W
0xF7	0	0x23	R,X
÷			

- What is the physical address that corresponds to the virtual address 0xF947?
- What is the physical address that corresponds to the virtual address 0xF700?

Exercise 4: Paging

Assume that you are currently executing a process P with the following page table on a system with 256-byte pages:

÷	V	Frame	Access
0xFA	1	0x47	R,W
0xF9	1	0x24	R,W
0xF8	0	NULL	R,W
0xF7	0	0x23	R,X
:			

- What is the physical address that corresponds to the virtual address 0xF947? 0xF9 0x47 0x2447
- What is the physical address that corresponds to the virtual address 0xF700? 0xF7 0x00 0x2300

Page fault

Evaluating Paging

 Isolation: don't want different process states collided in physical memory

 Efficiency: want fast reads/writes to memory

 Sharing: want option to overlap for communication

 Utilization: want best use of limited resource

 Virtualization: want to create illusion of more resources

