OS and Processes

CS 105

Intro to Operating Systems

- the operating system is a piece of software that manages
a computer's resources for its users and their applications
- Examples: OSX, Windows, Ubuntu, iOS, Android, Chrome OS

core OS functionality is implemented by the OS kernel

(Glue'

user interface

file I/O

device management
process control

resource allocation
isolation
communication
access control

multiprocessing
virtual memory
reliable networking
virtual machines

Operating System Goals

- Reliability: they operating system should do what you want
- Availability: the operating system should respond to user input

- Security: the system should not be (easily) corrupted by an
attacker

- Portability: the operating system should be easy to move to
new hardware platforms

- Performance: the operating system should impose minimal
overhead, the Ul should be responsive

- Adoption: people should use the operating system

Exercise 1: Operating Systems

What is an example of an operating system as:
a) referee
b) illusionist
c) glue

Try to be specific with your examples

Processes

- A program is a file containing code + data that describes
a computation

- A process is an instance of a running program.
- One of the most profound ideas in computer science
- Not the same as “program” or “processor”

Memory

Stack
Heap
Data
Code

Multiprocessing

- Computer runs many processes simultaneously

- Running program “top” on Mac

- System has 123 processes, 5 of which are active
- ldentified by Process ID (PID)

/Users/eleanor — top +

Processes: 291 total, 2 running, 289 sleeping, 1761 threads 13:28:14
Load Avg: 2.28, 3.50, 3.32 CPU usage: 16.28% user, 16.28% sys, 67.43% idle
SharedLibs: 184M resident, 52M data, 64M linkedit.

MemRegions: 230644 total, 2090M resident, 85M private, 810M shared.

PhysMem: 8160M used (2275M wired), 31M unused.

VM: 1370G vsize, 1090M framework vsize, 390511252(@) swapins, 393866102(0) swapo
Networks: packets: 117124661/108G in, 138330789/100G out.

Disks: 65170326/2297G read, 55833187/2115G written.

PID COMMAND %CPU TIME #TH #WQ #PORTS MEM PURG CMPRS PGRP

96079 bash 0.0 00:01.05 1 0 19 8192B 0B 1024K 96079
96078 login 0.0 00:00.10 2 1 30 8192B 0B 1916K 96078
92016 texstudio 0.0 42:37.65 17 2 315- 28M- @B 193M 92016
89747 com.apple.ap 0.0 06:56.73 5 3 318 15M 0B 14M 89747
86347 hdiejectd 0.0 00:01.63 2 1 32 252K @B 1124K 86347
86160 com.apple.We 0.0 01:42.54 7 2 207 1804K 0B 6720K 86160
86159 com.apple.We 0.0 01:44.81 5 2 121 796K 0B 6800K 86159
86156 com.apple.We 0.0 01:43.39 7 2 207 1700K 0B 7260K 86156
86155 com.apple.We 0.0 01:34.47 5 2 121 916K 0B 7436K 86155
82979 syspolicyd 0.0 00:10.78 3 2 52 816K 0B 5992K 82979
81953 accountsd 0.0 15:19.49 2 1 345 7252K ©0B- 201M 81953
79035 rtcreporting 0.0 02:04.90 4 2 56 808K ©B 3668K 79035

Multiprocessing: The lllusion

Memory Memory Memory
Stack Stack Stack
Heap Heap Heap
Data Data oo Data
Code Code Code

- Process provides each program with two key abstractions:
- Logical control flow
- Each program seems to have exclusive use of the CPU
« Provided by kernel mechanism called context switching

- Private address space
- Each program seems to have exclusive use of main memory.
« Provided by kernel mechanism called virtual memory

Multiprocessing: The (Traditional) Reality

Memory
Stack Stack Stack
Heap Heap Heap
Data Data Data
Code Code Code
Saved Saved Saved
registers registers registers

- Process executions interleaved (multitasking)
- Register values for nonexecuting processes saved in memory
- Address spaces managed by virtual memory system

Process Control Block (PCB)

- To implement a context switch, OS maintains a PCB for
each process containing:

- process table, which contains information about the process (id,
user, privilege level, arguments, status)\

- location of executable on disk
- file table

- register values (general-purpose registers, float registers, pc,
eflags...)

- memory state
- scheduling information

... and more!

Context Switching

- Processes are managed by a shared chunk of memory-
resident kernel code
- Important: the kernel code is not a separate process, but rather
code and data structures that the OS uses to manage all processes
- Control flow passes from one process to another via a

context switch

Process A Process B

user code

Time kernel code } context switch
user code

kernel code } context switch

user code

Multiprocessing: The (Traditional) Reality

Memory

Stack

Heap

Data

Code

Saved

registers

Saved

registers

Stack

Heap

Data

Code

Saved
registers

E

Multiprocessing: The (Traditional) Reality

1.

Memory
Stack Stack Stack
Heap Heap Heap
Data Data Data
Code Code Code
Saved Saved Saved
registers registers registers

Save current registers to memory (in PCB)

E

2. Schedule next process for execution

Multiprocessing: The (Traditional) Reality

Memory
Stack Stack : Stack
Heap Heap Heap
Data Data Data
Code Code Code
Saved Saved Saved
registers registers registers
|

E

1. Save current registers to memory (in PCB)
2. Schedule next process for execution
3. Load saved registers and switch address space

Multiprocessing: The (Modern) Reality

Memory
Stack Stack Stack
Heap Heap Heap
Data Data . Data
Code Code Code
Saved Saved Saved
registers registers registers

|

Multlcore processors
- Multiple CPUs on single chip
- Share main memory (and some of the caches)

- Each can execute a separate process
« Scheduling of processors onto cores done by kernel

Interrupts (Asynchronous Exceptions)

- Caused by events external to the processor
- Indicated by setting the processor’s interrupt pin
- Handler returns to “next” instruction

- Examples:

- Timer interrupt

- Every few ms, an external timer chip triggers an interrupt

- Used by the kernel to take back control from user programs
- 1/O interrupt from external device

- Hitting Ctrl-C at the keyboard

- Arrival of a packet from a network

- Arrival of data from a disk

Exceptions

- An exception is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)
- Kernel is the memory-resident part of the OS

- Examples of events: timer interrupt, Divide by 0, page fault, I/0
request completes, typing Ctrl-C

User code Kernel code

Event ——— |_current Exception ,
|_next Exception processing
by exception handler

<

* Return to |_current
* Return to |_next
* Abort

Exception Tables

Exception
numbers

WvTable

Exception

Code for
exception handler O

0

Code for
exception handler 1

1

v _~
o

2

./

Code for
exception handler 2

n-1

.\

Code for
exception handler n-1

- Each type of event has a
unique exception number k

- k = index into exception table
(a.k.a. interrupt vector)

- Handler k is called each time
exception k occurs

Synchronous Exceptions

- Caused by events that occur as a result of executing an
iInstruction:
- Traps
- Intentional
- Examples: system calls, breakpoint traps, special instructions
- Returns control to “next” instruction
- Faults

 Unintentional but possibly recoverable

- Examples: page faults (recoverable), protection faults (unrecoverable),
floating point exceptions

- Either re-executes faulting (“current”) instruction or aborts
- Aborts

 Unintentional and unrecoverable

- Examples: illegal instruction, parity error, machine check

- Aborts current program

Exercise 2: Context Switching

1) Explain the steps that an operating system goes
through when the CPU receives an interrupt.

2) A hardware designer argues that there are now enough
on-chip transistors to build a CPU with 1024 integer
registers and 512 floating point registers. As a result,
the compiler should almost never need to store anything
on the stack. As a new operating systems expert, give
your opinion of this design.

Process Life Cycle

Runnable

Creating Processes

 Parent process creates a new running child process by calling
fork

e 1nt fork(void)
- Returns 0 to the child process, child’s PID to parent process

« Child is almost identical to parent:
 Child get an identical (but separate) copy of the parent’s virtual address space.
« Child gets identical copies of the parent’s open file descriptors
« Child has a different PID than the parent

- fork is interesting (and often confusing) because
it is called once but returns twice

fork Example

{

int main ()

pid t pid;

int_x = 1;

pid = Fork();

if (pid == 0) { /* Child */
printf ("child : x=%d\n", ++x);
return 0;

}

/* Parent */

printf ("parent: x=%d\n", --Xx);

return 0;

fork.c

What are the possible outputs?

What if we want to fork a new program?

m Call once, return twice

m Duplicate but separate
address space

" x has a value of 1 when

fork returns in parent and
child

= Subsequent changes to x
are independent

m Shared open files

" stdout isthe samein
both parent and child

Parent Process

Child Process

execve()

execve: Loading and Running Programs

- int execve (char *filename, char *argv[], char *envp[])

- Loads and runs in the current process:

- Executable file £filename

« Can be object file or script file beginning with # ! interpreter
(e.g., #!/bin/bash)

- ...with argument list argv
* By convention argv[0]==filename
- ...and environment variable list envp
- “name=value” strings (e.g., USER=droh)
* getenv, putenv, printenv
- Overwrites code, data, and stack
- Retains PID, open files and signal context

- Called once and never returns
- ...except if there is an error

Linux Process Hierarch

“_..----I-------l-..
. wy
.]
. .
o* .

*

: [0] :

Login shell

‘e
e
-
.
e

Login shell
Child

@ @ Note: you can view the
hierarchy using the Linux

pstree command

pstree

Process Life Cycle

interrupt, yield

O\

Runnable Running
scheduled

Stopped

Modeling fork with Process Graphs

- A process graph is a useful tool for capturing the partial
ordering of statements in a concurrent program:

- Each vertex is the execution of a statement
- a -> b means a happens before b

- Edges can be labeled with current value of variables
- printf vertices can be labeled with output

- Each graph begins with a vertex with no inedges

- Any topological sort of the graph corresponds to a
feasible total ordering.
- Total ordering of vertices where all edges point from left to right

Process Graph Example

int main ()

{
pid t pid;
int x = 1;

pid = Fork();

return 0;

}

/* Parent */
printf ("parent:
return 0;

if (pid == 0) {
printf ("child

/* Child */

x=%d\n",

x=%d\n",

++x) ;

-—-X);

fork.c

_ Child
printf
x=1]1 x=0 0
® »® Parent
main fork printf

Interpreting Process Graphs

- Original graph:

x=2 2

_ Child
‘ printf
x=1 x=0 0
® »® Parent
main fork printf

Feasible total ordering:

- Relabeled graph: W
‘) a b e C

a b

fork Example: Two consecutive forks

Bye
o
void forkl() printf
{ L1 Bye
prin’g{("L@\n") ’ priﬁtf fork pr;i..ntf
fork(); B
: " 1" =
i
’
printf("Bye\n"); Lo Lo, e
} printf fork printf fork printf
Which of these outputs are feasible? LO LO
L1 Bye
Bye L1
Bye Bye
L1 L1
Bye Bye

Exercise 3: Forks and Scheduling

- For each of the following programs, draw the process
graph and then determine which of the possible outputs

are feasible

void fork2(){
printf("Lo\n");
if (fork() '= 0) {
printf("L1\n");
if (fork() '=0) {
printf("L2\n");

void fork3(){
printf("Lo\n");
if (fork() == 0) {
printf("L1\n");
if (fork() == 0) {
printf("L2\n");

s

s
printf("Bye\n");

I3
LO LO
L1 Bye
Bye L1
Bye Bye
L2 Bye
Bye L2

Bye

}
¥
printf("Bye\n");
}

LO LO
Bye Bye
L1 L1
L2 Bye
Bye Bye

L2

Exercise 3a

void fork2()
{
printf("LO\n"); Bye Bye
if (fork() '= 0) { 4pr’:¥ntf printf
printf("L1\n"); LO L1 ‘ L2 Bye
if (fork() != @) { pr:Lntf fork p?::n7tf f;rk pr:ntf printf
printf("L2\n");
5
I3
printf("Bye\n");
5
Which of these outputs are feasible? LO LO
L1 Bye
Bye L1
Bye Bye
L2 Bye

Bye L2

Exercise 3b

void fork3()
{ L2 Bye

printf("LO\n"); printf printf
1f (fork() == @) { }..1 - Ege
printf("L1\n"); print fork printf
if (fork() == 0) { Lo gge
printf("L2\n"); pr:i?ntf fork printf
5
I3
printf("Bye\n");
s
Which of these outputs are feasible? LO LO
Bye Bye
L1 L1
L2 Bye
Bye Bye

Bye L2

Process Life Cycle

interrupt, yield

PN

Runnable Running
scheduled

process or

/0 completion wait, 1/0 operation

Reaping Children

- Reaping
- Performed by parent on terminated child (using wait or waitpid)
- Parent is given exit status information
- Kernel then deletes zombie child process

-int wait(int *child status)
- Suspends current process until one of its children terminates
- Return value is the pid of the child process that terminated

- If child status !'= NULL, then the integer it points to will be set
to a value that indicates reason the child terminated and the exit
status:

- Checked using macros defined in wait.h

* WIFEXITED, WEXITSTATIS, WIFSIGNALED, WTERMSIG,
WIFSTOPPED, WSTOPSIG, WIFCONTINUED

* See textbook for details

wait Example

void fork6() {
int child_status;

HC ixit

if (fork() == 0) { printt |
printf("HC: hello from child\n");

exit(0);

} else { BCTe
printf("HP: hello from parent\n"); . hE o Y
wait(&child _status); fork printf wait printf
printf("CT: child has terminated\n");

¥

printf("Bye\n");

I3
Feasible output: Infeasible output:
HC HP
HP CT
CT Bye

Bye HC

Reaping Children
- What if parent doesn’t reap?

- If any parent terminates without reaping a child, then the orphaned
child will be reaped by init process (pid == 1)

- S0, only need explicit reaping in long-running processes
* e.g., shells and servers

Process Life Cycle

Terminated

interrupt, yield

PN

Runnable Running
scheduled

return from main,
exit, terminated

process or

/0 completion wait, 1/0 operation

Terminating Processes

- Process becomes terminated for one of three reasons:
- Returning from the main routine

- Receiving a signal whose default action is to terminate
- Calling the exit function

- void exit(int status)

- Terminates with an exit status of status
- Convention: normal return status is 0, nonzero on error

« Another way to explicitly set the exit status is to return an integer value
from the main routine

- exit is called once but never returns.

