
CS 105 Spring 2021

Lecture 16: Optimization with Caches

Review: Memory Hierarchy

2

Regs

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
and
cheaper
(per byte)
storage
devices

Remote secondary storage
(e.g., cloud, web servers)

Local disks hold files
retrieved from disks
on remote servers

L2 cache
(SRAM)

L1 cache holds cache lines retrieved
from the L2 cache.

CPU registers hold words retrieved from
the L1 cache.

L2 cache holds cache lines
retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and
costlier
(per byte)
storage
devices L3 cache

(SRAM)
L3 cache holds cache lines
retrieved from main memory.

L6:

Main memory holds
disk blocks retrieved
from local disks.

Review: Principle of Locality

3

Programs tend to use data and instructions with addresses
near or equal to those they have used recently

} Temporal locality:
} Recently referenced items are likely

to be referenced again in the near future

} Spatial locality:
} Items with nearby addresses tend

to be referenced close together in time

Review: An Example Cache

4

E = 2: Two lines per set
Assume: cache block size 8 bytes

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

Address of data: tag offsetindex

the
 re

st
of

the
 bi

ts

log
(#

se
ts)

 bi
ts

log
(bl

oc
k s

ize
) b

its

Typical Intel Core i7 Hierarchy

5

Regs

L1
d-cache

L1
i-cache

L2 unified
cache

Core 0

Regs

L1
d-cache

L1
i-cache

L2 unified
cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

Processor package
L1 i-cache and d-cache:

32 KB, 8-way,
Access: 4 cycles

L2 unified cache:
256 KB, 8-way,

Access: 10 cycles

L3 unified cache:
8 MB, 16-way,
Access: 40-75 cycles

Block size: 64 bytes for
all caches.

Cache Performance Metrics

6

• Miss Rate
• Fraction of memory references not found in cache (misses /

accesses)
• Typically 3-10% for L1
• can be quite small (e.g., < 1%) for L2, depending on size, etc.

• Hit Time
• Time to deliver a line in the cache to the processor

• includes time to determine whether the line is in the cache
• Typically 4 clock cycles for L1, 10 clock cycles for L2

• Miss Penalty
• Additional time required because of a miss

• typically 50-200 cycles for main memory (Trend: increasing!)

Memory Performance with Caching

7

• Read throughput (aka read bandwidth): Number of
bytes read from memory per second (MB/s)

• Memory mountain: Measured read throughput as a
function of spatial and temporal locality.
• Compact way to characterize memory system performance.

Memory Mountain Test Function

8

long data[MAXELEMS]; /* Global array to traverse */

/* test - Iterate over first "elems" elements of
* array “data” with stride of "stride", using
* using 4x4 loop unrolling.
*/
int test(int elems, int stride) {

long i, sx2=stride*2, sx3=stride*3, sx4=stride*4;
long acc0 = 0, acc1 = 0, acc2 = 0, acc3 = 0;
long length = elems, limit = length - sx4;

/* Combine 4 elements at a time */
for (i = 0; i < limit; i += sx4) {

acc0 = acc0 + data[i];
acc1 = acc1 + data[i+stride];
acc2 = acc2 + data[i+sx2];
acc3 = acc3 + data[i+sx3];

}

/* Finish any remaining elements */
for (; i < length; i++) {

acc0 = acc0 + data[i];
}
return ((acc0 + acc1) + (acc2 + acc3));

}

Call test() with many
combinations of elems
and stride.

For each elems
and stride:

1. Call test()
once to warm up
the caches.

2. Call test()
again and measure
the read
throughput(MB/s)

The Memory Mountain

9

128m
32m

8m
2m

512k
128k

32k
0

2000

4000

6000

8000

10000

12000

14000

16000

s1
s3

s5
s7

s9
s11

Size (bytes)

R
ea

d
th

ro
ug

hp
ut

 (M
B

/s
)

Stride (x8 bytes)

Core i7 Haswell
2.1 GHz
32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache
64 B block size

Slopes
of
spatial
locality

Ridges
of temporal
locality

L1

Mem

L2

L3

Aggressive
prefetching

Exercise 1: Locality
• Which of the following functions is better in terms of

locality with respect to array src?

void copyji(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (j = 0; j < 2048; j++)

for (i = 0; i < 2048; i++)
dst[i][j] = src[i][j];

}

void copyij(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (i = 0; i < 2048; i++)

for (j = 0; j < 2048; j++)
dst[i][j] = src[i][j];

}

Exercise 1: Locality
• Which of the following functions is better in terms of

locality with respect to array src?

void copyji(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (j = 0; j < 2048; j++)

for (i = 0; i < 2048; i++)
dst[i][j] = src[i][j];

}

void copyij(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (i = 0; i < 2048; i++)

for (j = 0; j < 2048; j++)
dst[i][j] = src[i][j];

}

81.8ms4.3ms
2.0 GHz Intel Core i7 Haswell

Writing Cache-Friendly Code

13

• Make the common case go fast
• Focus on the inner loops of the core functions

• Minimize the misses in the inner loops
• Repeated references to variables are good (temporal locality)
• Stride-1 reference patterns are good (spatial locality)

Example: Matrix Multiplication

14

• Multiply N x N matrices
• Matrix elements are

doubles (8 bytes)
• O(N3) total operations
• N reads per source

element
• N values summed per

destination

/* ijk */

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++){
sum += a[i][k] * b[k][j];

}
c[i][j] = sum;

}
}

Miss Rate Analysis for Matrix Multiply
• Assume:

• Block size = 32B (big enough for four doubles)
• Matrix dimension (N) is very large

• Approximate 1/N as 0.0
• Cache is not even big enough to hold multiple rows

• Analysis Method:
• Look at access pattern of inner loop

A

k

i

B

k

j

C

i

j

= x

15

Layout of C Arrays in Memory (review)
• C arrays allocated in row-major order

• each row in contiguous memory locations

• Stepping through columns in one row:
• accesses successive elements
• if data block size (B) > sizeof(aij) bytes, exploit spatial locality

• miss rate = sizeof(aij) / B

• Stepping through rows in one column:
• accesses distant elements
• no spatial locality!

• miss rate = 1 (i.e. 100%)

16

Matrix Multiplication (ijk) (jik is similar)

A B C
(i,*)

(*,j)
(i,j)

Inner loop:

Column-
wise

Row-wise Fixed

Misses per inner loop iteration:
A B C

0.25 1.0 0.0 2 loads, no stores
per inner loop iteration

17

/* ijk */

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i][k] * b[k][j];

c[i][j] = sum;
}

}

Exercise 2: Matrix Multiplication
/* kij */
for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = a[i][k];
for (j=0; j<n; j++)
c[i][j] += r * b[k][j];

}
}

A B C
(i,*)

(i,k) (k,*)
Inner loop:

/* jki */
for (j=0; j<n; j++) {
for (k=0; k<n; k++) {
r = b[k][j];
for (i=0; i<n; i++)
c[i][j] += a[i][k] * r;

}
}

A B C

(*,j)
(k,j)

Inner loop: (*,k)

Exercise 2: Matrix Multiplication
/* kij */
for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = a[i][k];
for (j=0; j<n; j++)
c[i][j] += r * b[k][j];

}
}

A B C
(i,*)

(i,k) (k,*)
Inner loop:

Misses per inner loop iteration:
A B C
0.0 0.25 0.25

2 loads, 1 store per inner loop iteration

/* jki */
for (j=0; j<n; j++) {
for (k=0; k<n; k++) {
r = b[k][j];
for (i=0; i<n; i++)
c[i][j] += a[i][k] * r;

}
}

A B C

(*,j)
(k,j)

Inner loop: (*,k)

2 loads, 1 store per inner loop iteration

Misses per inner loop iteration:
A B C
1.0 0.0 1.0

Summary of Matrix Multiplication
ijk (& jik):
• 2 loads, 0 stores
• misses/iter = 1.25

kij (& ikj):
• 2 loads, 1 store
• misses/iter = 0.5

jki (& kji):
• 2 loads, 1 store
• misses/iter = 2.0

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;

for (k=0; k<n; k++)
sum += a[i][k] * b[k][j];

c[i][j] = sum;

}
}

for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = a[i][k];

for (j=0; j<n; j++)
c[i][j] += r * b[k][j];

}

}
for (j=0; j<n; j++) {
for (k=0; k<n; k++) {
r = b[k][j];

for (i=0; i<n; i++)
c[i][j] += a[i][k] * r;

}

}

20

Matrix Multiply Performance
Core i7 Pentium III Xeon

1

10

100

50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

C
yc

le
s

pe
r i

nn
er

 lo
op

 it
er

at
io

n

Array size (n)

jki
kji
ijk
jik
kij
ikj

Can we do better?

a b

i

j

*
c

+=

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {

int i, j, k;
for (i = 0; i < n; i++)

for (j = 0; j < n; j++)
for (k = 0; k < n; k++)

c[i*n + j] += a[i*n + k] * b[k*n + j];
}

23

Cache Miss Analysis
• Assume:

• Matrix elements are doubles
• Cache block = 4 doubles
• Cache size C << n (much smaller than n)

• First iteration:
• n/4 + n = 5n/4 misses

• Afterwards in cache:
(schematic)

*+=

n

*+=
4 wide

24

Cache Miss Analysis
• Assume:

• Matrix elements are doubles
• Cache block = 4 doubles
• Cache size C << n (much smaller than n)

• Second iteration:
• n/4 + n = 5n/4 misses

• Total misses:
• 5n/4 * n2 = (5/4) * n3

n

*+=
4 wide

25

Blocked Matrix Multiplication
c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {

int i, j, k;
for (i = 0; i < n; i+=B)

for (j = 0; j < n; j+=B)
for (k = 0; k < n; k+=B)

/* B x B mini matrix multiplications */
for (i1 = i; i1 < i+B; i++)

for (j1 = j; j1 < j+B; j++)
for (k1 = k; k1 < k+B; k++)

c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];
}

a b

i1

j1

*
c

=
c

+

Block size B x B

26

Cache Miss Analysis
• Assume:

• Cache block = 4 doubles
• Cache size C << n (much smaller than n)
• Three blocks fit into cache: 3B2 < C

• First (block) iteration:
• B2/4 misses for each block
• 2n/B * B2/4 = nB/2

(omitting matrix c)

• Afterwards in cache
(schematic) *=

*=

Block size B x B

n/B blocks

27

Cache Miss Analysis
• Assume:

• Cache block = 4 doubles
• Cache size C << n (much smaller than n)
• Three blocks fit into cache: 3B2 < C

• Second (block) iteration:
• Same as first iteration
• 2n/B * B2/4 = nB/2

• Total misses:
• nB/2 * (n/B)2 = n3/(2B)

*+=

Block size B x B

n/B blocks

28

Blocking Summary
• No blocking: (5/4) * n3

• Blocking: n3 / (2B)

• Suggest largest possible block size B, but limit 3B2 < C!

• Reason for dramatic difference:
• Matrix multiplication has inherent temporal locality:

• Input data: 3n2, computation 2n3

• Every array elements used O(n) times!
• But program has to be written properly

29

A reality check
• This analysis only holds on some machines!

• Intel Core i7 does aggressive pre-fetching for one-stride
programs, so blocking doesn't actually improve performance

• But on a Pentium III Xeon:

And that's the end of Part 1

128m32m8m2m512k128k32k
0

2000
4000
6000
8000

10000
12000
14000
16000

s1
s5

s9
Size (bytes)Stride (x8 bytes)

Exercise 3: Feedback
1. Rate how well you think this recorded lecture worked

1. Better than an in-person class
2. About as well as an in-person class
3. Less well than an in-person class, but you still learned something
4. Total waste of time, you didn't learn anything

2. How much time did you spend on this video lecture
(including time spent on exercises)?

3. Do you have any questions that you would like me to
address in this week's problem session?

4. Do you have any other comments or feedback?

33

