
CS 105 Spring 2021

Lecture 15: Caches (cont'd)

Review: Memory Hierarchy

2

Regs

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
and
cheaper
(per byte)
storage
devices

Remote secondary storage
(e.g., cloud, web servers)

Local disks hold files
retrieved from disks
on remote servers

L2 cache
(SRAM)

L1 cache holds cache lines retrieved
from the L2 cache.

CPU registers hold words retrieved from
the L1 cache.

L2 cache holds cache lines
retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and
costlier
(per byte)
storage
devices L3 cache

(SRAM)
L3 cache holds cache lines
retrieved from main memory.

L6:

Main memory holds
disk blocks retrieved
from local disks.

Review: Principle of Locality

3

Programs tend to use data and instructions with addresses
near or equal to those they have used recently

} Temporal locality:
} Recently referenced items are likely

to be referenced again in the near future

} Spatial locality:
} Items with nearby addresses tend

to be referenced close together in time

Review: Direct-mapped Cache

4

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find line

identifies byte in line

Address of data: tag offsetindex

the
 re

st
of

the
 bi

ts

log
(#

lin
es

) b
its

log
(bl

oc
k s

ize
) b

its

How well does this take advantage of spacial locality?
How well does this take advantage of temporal locality?

valid bit tag data block

ca
ch

e
lin

es

2-way Set Associative Cache

5

E = 2: Two lines per set
Assume: cache block size 8 bytes

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

Address of data: tag offsetindex

the
 re

st
of

the
 bi

ts

log
(#

se
ts)

 bi
ts

log
(bl

oc
k s

ize
) b

its

Exercise 1: 2-way Set Associative Cache
CacheMemory

0x14
0x10
0x0c
0x08
0x04
0x00

17

13

16
15
14

18

Assume 8 byte data blocks

Set 0 Set 1

Set 0 Set 1

Access tag idx off h/m
rd 0x00
rd 0x04
rd 0x14
rd 0x00
rd 0x04
rd 0x14

Line 0 Line 1 Line 0 Line 1
0 0 47 48 0 1 47 48 0 0 47 48 0 1 47 48

Exercise 1: 2-way Set Associative Cache
CacheMemory

0x14
0x10
0x0c
0x08
0x04
0x00

17

13

16
15
14

18

Assume 8 byte data blocks

Set 0 Set 1

Set 0 Set 1

Access tag idx off h/m
rd 0x00
rd 0x04
rd 0x14
rd 0x00
rd 0x04
rd 0x14

Line 0 Line 1 Line 0 Line 1
0 0 47 48 0 1 47 48 0 0 47 48 0 1 47 48

rd 0x20

0000 0 000 m
0000 0 100 h

0001 0 100 m
0000 0 000 h
0000 0 100 h

0001 0 100 h

01 13 14

11 17 18

0010 0 000 m

Eviction from the Cache

8

On a cache miss, a new block is loaded into the cache

• Direct-mapped cache: A valid block at the same location
must be evicted—no choice

• Associative cache: If all blocks in the set are valid, one
must be evicted
• Random policy
• FIFO
• LIFO
• Least-recently used; requires extra data in each set
• Most-recently used; requires extra data in each set
• Most-frequently used; requires extra data in each set

Exercise 2: Cache Eviction
CacheMemory

0x14
0x10
0x0c
0x08
0x04
0x00

17

13

16
15
14

18

Assume 8 byte data blocks, LRU eviction

Set 0 Set 1

Set 0 Set 1

Access tag idx off h/m
rd 0x00
rd 0x04
rd 0x14
rd 0x00
rd 0x04
rd 0x14

Line 0 Line 1 Line 0 Line 1
0 0 47 48 0 1 47 48 0 0 47 48 0 1 47 48

rd 0x20

0000 0 000 m
0000 0 100 h

0001 0 100 m
0000 0 000 h
0000 0 100 h

0001 0 100 h

01 13 14

11 17 18

0010 0 000 m

Exercise 2: Cache Eviction
CacheMemory

0x14
0x10
0x0c
0x08
0x04
0x00

17

13

16
15
14

18

Assume 8 byte data blocks, LRU eviction

Set 0 Set 1

Set 0 Set 1

Access tag idx off h/m
rd 0x00
rd 0x04
rd 0x14
rd 0x00
rd 0x04
rd 0x14

Line 0 Line 1 Line 0 Line 1
0 0 47 48 0 1 47 48 0 0 47 48 0 1 47 48

rd 0x20

0000 0 000 m
0000 0 100 h

0001 0 100 m
0000 0 000 h
0000 0 100 h

0001 0 100 h

01 13 14

11 17 18

0010 0 000 m
21 21 22

Caching Organization Summarized

11

• A cache consists of lines

• A line contains
• A block of bytes, the data values from memory
• A tag, indicating where in memory the values are from
• A valid bit, indicating if the data are valid

• Lines are organized into sets
• Direct-mapped cache: one line per set
• k-way associative cache: k lines per set
• Fully associative cache: all lines in one set

Caching Vocabulary

12

• Size: the total number of bytes that can be stored in the cache

• Cache Hit: the desired value is in the cache and returned quickly
• Cache Miss: the desired value is not in the cache and must be

fetched from a more distant cache (or ultimately from main
memory)

• Miss rate: the fraction of accesses that are misses

• Hit time: the time to process a hit
• Miss penalty: the additional time to process a miss

• Average access time: hit-time + miss-rate * miss-penalty

Categorizing Misses
• Compulsory: first-reference to a block
• Capacity: cache is too small to hold all of the data
• Conflict: collisions in a specific set

Average access time: hit-time + miss-rate * miss-penalty

Exercise 3: Categorizing Misses
• For each of the cache misses in Exercise 1, categorize

that miss as (1) compulsory, (2) capacity, or (3) conflict

• Based on your categorizations, would you recommend (1)
increasing the block size, (2) increasing the associativity,
or (3) increasing the total cache size

Typical Intel Core i7 Hierarchy

15

Regs

L1
d-cache

L1
i-cache

L2 unified
cache

Core 0

Regs

L1
d-cache

L1
i-cache

L2 unified
cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

Processor package
L1 d-cache and i-cache:

32 KB, 8-way,
Access: 4 cycles

L2 unified cache:
256 KB, 8-way,

Access: 10 cycles

L3 unified cache:
8 MB, 16-way,
Access: 40-75 cycles

Block size: 64 bytes for
all caches.

Caching and Writes

16

• What to do on a write-hit?
• Write-through: write immediately to memory
• Write-back: defer write to memory until replacement of line

• Need a dirty bit (line different from memory or not)

• What to do on a write-miss?
• Write-allocate: load into cache, update line in cache

• Good if more writes to the location follow
• No-write-allocate: writes straight to memory, does not load into

cache
• Typical

• Write-through + No-write-allocate
• Write-back + Write-allocate

Exercise 4: Write-through + No-write-allocate
CacheMemory

0x24
0x20
0x1c
0x18
0x14
0x10

21

17

20
19
18

22

Assume 4 byte data blocks

Line 0 Line 1 Line 2 Line 3 W
0 0 47 0 1 47 0 2 47 0 3 47Access tag idx off h/m

rd 0x10
wr 8,0x10
wr 9,0x24
rd 0x24
rd 0x20

Exercise 4: Write-through + No-write-allocate
CacheMemory

0x24
0x20
0x1c
0x18
0x14
0x10

21

17

20
19
18

22

Assume 4 byte data blocks

Line 0 Line 1 Line 2 Line 3 W
0 0 47 0 1 47 0 2 47 0 3 47Access tag idx off h/m

rd 0x10
wr 8,0x10
wr 9,0x24
rd 0x24
rd 0x20

0001 00 00 m 11 17
0001 00 00 h 11 8
0010 01 00 m

21 90010 01 00 m
0010 00 00 m 21 21

N
Y
Y

N
N

8

9

Exercise 5: Write-back + Write-allocate
Cache

Assume 4 byte data blocks

Line 0 Line 1 Line 2 Line 3 W
0 0 47 0 1 47 0 2 47 0 3 47

Memory
0x24
0x20
0x1c
0x18
0x14
0x10

21

17

20
19
18

22

Access tag idx off h/m
rd 0x10
wr 8,0x10
wr 9,0x24
rd 0x24
rd 0x20

Exercise 5: Write-back + Write-allocate
Cache

Assume 4 byte data blocks

Line 0 Line 1 Line 2 Line 3 W
0 0 47 0 1 47 0 2 47 0 3 47

Memory
0x24
0x20
0x1c
0x18
0x14
0x10

21

17

20
19
18

22

Access tag idx off h/m
rd 0x10
wr 8,0x10
wr 9,0x24
rd 0x24
rd 0x20

0001 00 00 m 11 17
0001 00 00 h 11 8
0010 01 00 m 21 9
0010 01 00 h
0010 00 00 m 21 21

N
N
N

N
Y

8

Exercise 6: Feedback
1. Rate how well you think this recorded lecture worked

1. Better than an in-person class
2. About as well as an in-person class
3. Less well than an in-person class, but you still learned something
4. Total waste of time, you didn't learn anything

2. How much time did you spend on this video lecture
(including time spent on exercises)?

3. Do you have any questions that you would like me to
address in this week's problem session?

4. Do you have any other comments or feedback?

21

