Lecture 4: Floats

CS 105

Representing Integers

unsigned:

signed (two's complement):

Note: to compute -x for a signed int x, flip all the bits, then add 1 $x + \sim x = 11...1 = -1$, so $x + (\sim x + 1) = 0$

Fractional binary numbers

• What is 1001.101₂?

Fractional Binary Numbers

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number: $\sum_{k=-j}^{i} (b_k \cdot 2^k)$

Example: Fractional Binary Numbers

• What is 1001.101₂?

$$= 8 + 1 + \dots$$

Example: Fractional Binary Numbers

• What is 1001.101₂?

$$=8+1+\frac{1}{2}+\frac{1}{8}$$

Example: Fractional Binary Numbers

What is 1001.101₂?

$$= 8 + 1 + \frac{1}{2} + \frac{1}{8} = 9 \frac{5}{8} = 9.625$$

What is the binary representation of 13 9/16?

1101.1001

Exercise 1: Fractional Binary Numbers

- Translate the following fractional numbers to their binary representation
 - 5 3/4
 - 2 7/8
 - 1 7/16
- Translate the following fractional binary numbers to their decimal representation
 - . 000.01100
 - . 000.11000
 - 001.10000

Exercise 1: Fractional Binary Numbers

- Translate the following fractional numbers to their binary representation
 - 5 3/4 **101.11000**
 - 2 7/8010.11100
 - 1 7/16 001.01110

What do you notice about shifting?

- Translate the following fractional binary numbers to their decimal representation
 - 000.01100 $=\frac{1}{4}+\frac{1}{8}=\frac{3}{8}=.375$
 - 000.11000 $=\frac{1}{2}+\frac{1}{4}=\frac{3}{4}=.75$
 - 001.10000 = $1 + \frac{1}{2} = \frac{3}{2} = 1.5$

Representable Numbers

- Limitation #1
 - Can only exactly represent numbers of the form x/2^k
 - Other rational numbers have repeating bit representations

```
    Value Representation
```

- 1/3 0.01010101[01]...2
- 1/5 0.00110011[0011]...2
- 1/10 0.000110011[0011]...2

Limitation #2

- Just one setting of binary point within the w bits
- Limited range of numbers (Very small values? Imprecise values?)

Floating Point Representation

- Numerical Form: $(-1)^s \cdot M \cdot 2^E$
 - Sign bit s determines whether number is negative or positive
 - Significand M normally a fractional value in range [1.0,2.0)
 - Exponent E weights value by power of two

Exercise 2: Floating Point Numbers

- For each of the following numbers, specify a binary fractional number M in [1.0,2.0) and a binary number E such that the number is equal to M · 2^E
 - 5 3/4
 - 2 7/8
 - · 1 1/2
 - 3/4

Exercise 2: Floating Point Numbers

 For each of the following numbers, specify a binary fractional number M in [1.0,2.0) and a binary number E such that the number is equal to M · 2^E

```
. 53/4 M = 1.0111 E = 2

. 27/8 M = 1.0111 E = 1

. 11/2 M = 1.1000 E = 0

. 3/4 M = 1.1000 E = -1
```

Floating Point Representation

- Numerical Form: $(-1)^s \cdot M \cdot 2^E$
 - Sign bit s determines whether number is negative or positive
 - Significand M normally a fractional value in range [1.0,2.0)
 - Exponent E weights value by power of two

Encoding:

s
$$\exp = e_{k-1} \dots e_1 e_0$$
 frac = $f_{n-1} \dots f_1 f_0$

- s is sign bit s
- exp field encodes E (but is not equal to E)
 - normally $E = e_{k-1} \dots e_1 e_0 (2^{k-1} 1)$ bias
- frac field encodes M (but is not equal to M)
 - normally $M = 1. f_{n-1} ... f_1 f_0$

Float (32 bits):

- k = 8, n = 23
- bias = 127
 Double (64 bits)
- k=11, n = 52
- bias = 1023

IEEE 754 single-precision binary floating-point format

$$(-1)^{b_{31}} \times 2^{(b_{30}b_{29}...b_{23})_2-127} \times (1.b_{22}b_{21}...b_0)_2$$

Exercise 3: Floating Point Representations

- What are the values of s, exp, and frac that correspond to the float representation of 5 3/4, assuming 1-bit s, 3-bit exp, and 4-bit frac? s $exp = e_{k-1} \dots e_1 e_0$ $frac = f_{n-1} \dots f_1 f_0$
 - $(-1)^{s} \cdot M \cdot 2^{E}$, M = 1.0111, E = 2
 - s is sign bit s
 - exp field encodes E (but is not equal to E)
 - normally $E = e_{k-1} \dots e_1 e_0 (2^{k-1} 1)$
 - frac field encodes M (but is not equal to M)
 - normally $M = 1. f_{n-1} ... f_1 f_0$
- Under those assumptions, what is the full representation of 5 3/4 as a one-byte floating point value?

Exercise 3: Floating Point Representations

• What are the values of s, exp, and frac that correspond to the float representation of 5 3/4, assuming 1-bit s, 3-bit exp, and 4-bit frac? s $exp = e_{k-1} \dots e_1 e_0$ $exp = frac = f_{n-1} \dots f_1 f_0$

```
• (-1)^{S} \cdot M \cdot 2^{E}, M = 1.0111, E = 2
```

s is sign bit s

$$s = 0$$

exp field encodes E (but is not equal to E)

$$exp = 101$$

• normally $E = e_{k-1} \dots e_1 e_0 - (2^{k-1} - 1)$

frac field encodes M (but is not equal to M)

$$frac = 0111$$

• normally $M = 1. f_{n-1} ... f_1 f_0$

 Under those assumptions, what is the full representation of 5 3/4 as a one-byte floating point value?

01010111 = 0x57

Example: Floats

 What fractional number is represented by the bytes 0x3ec00000? Assume big-endian order.

s
$$\exp = e_{k-1} \dots e_1 e_0$$
 frac $= f_{n-1} \dots f_1 f_0$

- S is sign bit s
- exp field encodes E (but is not equal to E)
 - normally $E = e_{k-1} \dots e_1 e_0 (2^{k-1} 1)$
- frac field encodes M (but is not equal to M)
 - normally $M = 1. f_{n-1} ... f_1 f_0$

Float (32 bits):

- k = 8, n = 23
 bias = 127

$$(-1)^{s} \cdot M \cdot 2^{E}$$

0011 1110 1100 0000 0000 0000 0000 0000

$$(-1)^{0} \cdot 1.5_{10} \cdot 2^{-2} = 1 \cdot \frac{3}{2} \cdot \frac{1}{4} = \frac{3}{8} = .375_{10} \qquad (-1)^{0} \cdot 1.1_{2} \cdot 2^{-2} = .011_{2} = \frac{1}{4} + \frac{1}{8} = .375_{10}$$

Exercise 4: Floats

 What fractional number is represented by the bytes 0x423c0000? Assume big-endian order.

s
$$\exp = e_{k-1} \dots e_1 e_0$$
 frac $= f_{n-1} \dots f_1 f_0$

- s is sign bit s
- exp field encodes *E* (but is not equal to E)
 - normally $E = e_{k-1} \dots e_1 e_0 (2^{k-1} 1)$
- frac field encodes M (but is not equal to M)
 - normally $M = 1. f_{n-1} ... f_1 f_0$

Float (32 bits):

- k = 8, n = 23
- bias = 127

$$(-1)^{s} \cdot M \cdot 2^{E}$$

0100 0010 0011 1100 0000 0000 0000 0000

Limitation so far...

What is the smallest non-negative number that can be represented?

0000 0000 0000 0000 0000 0000 0000

What we like the smallest non-negative number to be?

Normalized and Denormalized

s exp frac

$$(-1)^{s} \cdot M \cdot 2^{E}$$

Normalized Values

- exp is neither all zeros nor all ones (normal case)
- exponent is defined as $E = e_{k-1} \dots e_1 e_0$ bias, where bias = $2^{k-1} 1$ (e.g., 127 for float or 1023 for double)
- significand is defined as $M = 1.f_{n-1}f_{n-2}...f_0$

Denormalized Values

- exp is either all zeros or all ones
- if all zeros: E = 1 bias and $M = 0. f_{n-1} f_{n-2} ... f_0$
- if all ones: infinity (if frac is all zeros) or NaN (if frac is non-zero)

Visualization: Floating Point Encodings

Exercise 5: Limits of Floats

 What is the difference between the largest (non-infinite) positive number that can be represented as a (normalized) float and the second-largest?

23-bits

Exercise 5: Limits of Floats

23-bits

 What is the difference between the largest (non-infinite) positive number that can be represented as a (normalized) float and the second-largest?

0111 1111 0111 1111 1111 1111 1111

$$diff = 0.00000000000000000000001_2 \cdot 2^{127} = 1_2 \cdot 2^{127-23} = \mathbf{2^{104}}$$

Any number between these two gets rounded.

Another Way to View Them

S WINDOW OFFSET

- Sign bit
- Window into two consecutive powers of two
 - [0.5, 1], [1, 2], [2, 4], ..., [2¹²⁷, 2¹²⁸]
- Offset dividing the window into 2²³ buckets
 - Finer grained near zero

Correctness

- Example 1: Is (x + y) + z = x + (y + z)?
 - Ints: Yes!
 - Floats:
 - $(2^30 + -2^30) + 3.14 \rightarrow 3.14$
 - $2^30 + (-2^30 + 3.14) \rightarrow 0.0$

Floating Point in C

- C Guarantees Two Levels
 - float single precision (32 bits)
 - double double precision (64 bits)
- Conversions/Casting
 - Casting between int, float, and double changes bit representation
 - double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
 - int \rightarrow double
 - Exact conversion,
 - int → float
 - Will round

Exercise 6: Casting with Floats

• Assume you have three variables: an int x, a float f, and a double d. Assume that all three variables store numeric values (not $+\infty$, $-\infty$, or NaN). Which of the following expressions are guaranteed to evaluate to True?

```
    x == (int)(double)(x)
    x == (int)(float)(x)
    d == (double)(float) d
    f == (float)(double) f
```

Exercise 6: Casting with Floats

Assume you have three variables: an int x, a float f, and a double d. Assume that all three variables store numeric values (not +∞,-∞, or NaN). Which of the following expressions are guaranteed to evaluate to True?

```
    x == (int)(double)(x) True
    x == (int)(float)(x) False
    d == (double)(float) d False
    f == (float)(double) f True
```

Floating Point Operations

- All the bitwise and logical operations still work
- Float arithmetic operations done by separate hardware unit (FPU)