
CS 105

Lecture 4: Floats



Representing Integers
• unsigned:

• signed (two's complement):

Note: to compute –x for a signed int x, flip all the bits, then add 1 

CS 105, Computer Systems Pomona College

Arithmetic, Part 1

Use usual addition and subtraction.

• like you learned in second grade, only binary

• same for unsigned and signed

• but error conditions di↵er

To negate a signed value: complement the bits and add 1.

• Reason: x + ⇠ x = 11 . . . 1 = �1, so x + (⇠ x + 1) = 0.

16

128 (27) 64 (26) 32 (25) 16 (24) 8 (23) 4 (22) 2 (21) 1 (20)

-128 (27) 64 (26) 32 (25) 16 (24) 8 (23) 4 (22) 2 (21) 1 (20)



Fractional binary numbers
• What is 1001.1012?



2i

2i-1

4
2
1

1/2
1/4
1/8

2-j

bi bi-1 ••• b2 b1 b0 b-1 b-2 b-3 ••• b-j

• • •

Fractional Binary Numbers

• Representation
• Bits to right of “binary point” represent fractional powers of 2
• Represents rational number:  ∑!"#$% (𝑏! ⋅ 2!)

• • •



Example: Fractional Binary Numbers
• What is 1001.1012?

= 𝟖 + 𝟏 + …



Example: Fractional Binary Numbers
• What is 1001.1012?

= 𝟖 + 𝟏 +
𝟏
𝟐 +

𝟏
𝟖



Example: Fractional Binary Numbers
• What is 1001.1012?

• What is the binary representation of 13 9/16?

= 𝟖 + 𝟏 +
𝟏
𝟐 +

𝟏
𝟖 = 𝟗

𝟓
𝟖 = 𝟗. 𝟔𝟐𝟓

1101.1001



Exercise 1: Fractional Binary Numbers
• Translate the following fractional numbers to their binary 

representation
• 5 3/4 

• 2 7/8 
• 1 7/16

• Translate the following fractional binary numbers to their 
decimal representation
• 000.01100

• 000.11000

• 001.10000



Exercise 1: Fractional Binary Numbers
• Translate the following fractional numbers to their binary 

representation
• 5 3/4 

• 2 7/8 
• 1 7/16

• Translate the following fractional binary numbers to their 
decimal representation
• 000.01100

• 000.11000

• 001.10000

101.11000

010.11100

001.01110

=
𝟏
𝟒 +

𝟏
𝟖 =

𝟑
𝟖 = . 𝟑𝟕𝟓

=
𝟏
𝟐 +

𝟏
𝟒 =

𝟑
𝟒 = . 𝟕𝟓

= 𝟏 +
𝟏
𝟐 =

𝟑
𝟐 = 𝟏. 𝟓

What do you notice about shifting?



Representable Numbers
• Limitation #1

• Can only exactly represent numbers of the form x/2k

• Other rational numbers have repeating bit representations
• Value Representation

• 1/3 0.0101010101[01]…2
• 1/5 0.001100110011[0011]…2
• 1/10 0.0001100110011[0011]…2

• Limitation #2
• Just one setting of binary point within the w bits
• Limited range of numbers (Very small values?  Imprecise values?)



Floating Point Representation
• Numerical Form: −1 . ⋅ 𝑀 ⋅ 2/

• Sign bit 𝑠 determines whether number is negative or positive

• Significand 𝑀 normally a fractional value in range [1.0,2.0)

• Exponent 𝐸 weights value by power of two



Exercise 2: Floating Point Numbers
• For each of the following numbers, specify a binary 

fractional number M in [1.0,2.0) and a binary number E 
such that the number is equal to 𝑀 ⋅ 2/

• 5 3/4 
• 2 7/8 
• 1 1/2
• 3/4



Exercise 2: Floating Point Numbers
• For each of the following numbers, specify a binary 

fractional number M in [1.0,2.0) and a binary number E 
such that the number is equal to 𝑀 ⋅ 2/

• 5 3/4 
• 2 7/8 
• 1 1/2
• 3/4

M = 1.0111
M = 1.0111

E = 2
E = 1

M = 1.1000
M = 1.1000

E = 0
E = -1



• Numerical Form: −1 . ⋅ 𝑀 ⋅ 2/
• Sign bit 𝑠 determines whether number is negative or positive
• Significand 𝑀 normally a fractional value in range [1.0,2.0)
• Exponent 𝐸 weights value by power of two

• Encoding:

• s is sign bit s
• exp field encodes 𝐸 (but is not equal to E)
• normally 𝐸 = 𝑒!"#…𝑒#𝑒$ − (2!"# − 1)

• frac field encodes M (but is not equal to M)
• normally 𝑀 = 1. 𝑓%"#…𝑓#𝑓$

Floating Point Representation

𝑠 exp = 𝑒!#&…𝑒&𝑒' frac = 𝑓(#&…𝑓&𝑓'

bias

Float (32 bits):
• k = 8, n = 23
• bias = 127
Double (64 bits)
• k=11, n = 52
• bias = 1023



IEEE 754 single-precision binary 
floating-point format

−1 9!" × 2 9!#9$%…9$! $:;<= × 1. 𝑏<<𝑏<;…𝑏> <



Exercise 3: Floating Point Representations
• What are the values of s, exp, and frac that correspond to 

the float representation of 5 3/4, assuming 1-bit s, 3-bit 
exp, and 4-bit frac?
• −1 ) ⋅ 𝑀 ⋅ 2*, M = 1.0111, E = 2
• s is sign bit s
• exp field encodes 𝐸 (but is not equal to E)
• normally 𝐸 = 𝑒!#&…𝑒&𝑒' − (2!#& − 1)

• frac field encodes M (but is not equal to M)
• normally 𝑀 = 1. 𝑓(#&…𝑓&𝑓'

• Under those assumptions, what is the full representation 
of 5 3/4 as a one-byte floating point value?

𝑠 exp = 𝑒!#&…𝑒&𝑒' frac = 𝑓(#&…𝑓&𝑓'



Exercise 3: Floating Point Representations
• What are the values of s, exp, and frac that correspond to 

the float representation of 5 3/4, assuming 1-bit s, 3-bit 
exp, and 4-bit frac?
• −1 ) ⋅ 𝑀 ⋅ 2*, M = 1.0111, E = 2
• s is sign bit s
• exp field encodes 𝐸 (but is not equal to E)
• normally 𝐸 = 𝑒!#&…𝑒&𝑒' − (2!#& − 1)

• frac field encodes M (but is not equal to M)
• normally 𝑀 = 1. 𝑓(#&…𝑓&𝑓'

• Under those assumptions, what is the full representation 
of 5 3/4 as a one-byte floating point value?

𝑠 exp = 𝑒!#&…𝑒&𝑒' frac = 𝑓(#&…𝑓&𝑓'

s = 0

exp = 101

frac = 0111

01010111 = 0x57



Example: Floats
• What fractional number is represented by the bytes 

0x3ec00000? Assume big-endian order. 
𝑠 exp = 𝑒!#&…𝑒&𝑒' frac = 𝑓(#&…𝑓&𝑓'

Float (32 bits):
• k = 8, n = 23
• bias = 127

• s is sign bit s
• exp field encodes 𝐸 (but is not equal to E)

• normally 𝐸 = 𝑒!"#…𝑒#𝑒$ − (2!"# − 1)
• frac field encodes M (but is not equal to M)

• normally 𝑀 = 1. 𝑓%"#…𝑓#𝑓$

0011 1110 1100 0000 0000 0000 0000  0000
s=0 exp=125 frac = 100000000000000000000002

s=0 E = -2 M = 1.100000000000000000000002 = 1.510 

−1 $ ⋅ 1.5#$ ⋅ 2"& = 1 ⋅
3
2 ⋅
1
4 =

3
8 = . 𝟑𝟕𝟓𝟏𝟎

−1 $ ⋅ 1.1& ⋅ 2"& = .011&=
1
4 +

1
8 = . 𝟑𝟕𝟓𝟏𝟎

−1 . ⋅ 𝑀 ⋅ 2/



C Float Demo



Exercise 4: Floats
• What fractional number is represented by the bytes 

0x423c0000? Assume big-endian order. 
𝑠 exp = 𝑒!#&…𝑒&𝑒' frac = 𝑓(#&…𝑓&𝑓'

Float (32 bits):
• k = 8, n = 23
• bias = 127

• s is sign bit s
• exp field encodes 𝐸 (but is not equal to E)

• normally 𝐸 = 𝑒!"#…𝑒#𝑒$ − (2!"# − 1)
• frac field encodes M (but is not equal to M)

• normally 𝑀 = 1. 𝑓%"#…𝑓#𝑓$

0100 0010 0011 1100 0000 0000 0000  0000
s=0 exp=132 frac = 011110000000000000000002

s=0 E = 5 M = 1.011110000000000000000002

−1 $ ⋅ 1.011110& ⋅ 2) = 101111.0& == 𝟒𝟕𝟏𝟎

−1 . ⋅ 𝑀 ⋅ 2/



Limitation so far…
• What is the smallest non-negative number that can be 

represented?

• What we like the smallest non-negative number to be?

0000 0000 0000 0000 0000 0000 0000  0000
s=0 exp=0 frac = 000000000000000000000002

s=0 E = -127 M = 1.000000000000000000000002

−1 $ ⋅ 1.0& ⋅ 2"#&* = 2"#&*



Normalized and Denormalized

−1 . ⋅ 𝑀 ⋅ 2/

Normalized Values
• exp is neither all zeros nor all ones (normal case)
• exponent is defined as E = 𝑒!#&…𝑒&𝑒' − bias, where               
bias = 2!#& − 1 (e.g., 127 for float or 1023 for double)

• significand is defined as 𝑀 = 1. 𝑓(#&𝑓(#+…𝑓'

• Denormalized Values 
• exp is either all zeros or all ones
• if all zeros: E = 1 − bias and 𝑀 = 0. 𝑓(#&𝑓(#+…𝑓'
• if all ones: infinity (if frac is all zeros) or NaN (if frac is non-zero)

s exp frac



Visualization: Floating Point Encodings

+¥−¥

-0

+Denorm +Normalized−Denorm−Normalized

+0NaN NaN



Exercise 5: Limits of Floats
• What is the difference between the largest (non-infinite) 

positive number that can be represented as a 
(normalized) float and the second-largest?

s exp frac
1 8-bits 23-bits



Exercise 5: Limits of Floats
• What is the difference between the largest (non-infinite) 

positive number that can be represented as a 
(normalized) float and the second-largest?

Any number between these two gets rounded.

s exp frac
1 8-bits 23-bits

0111 1111 0111 1111 1111 1111 1111 1111
s=0 E = 127 M = 1.111111111111111111111112

largest = 1.11111111111111111111111< ⋅ 2;<=
second_largest = 1.11111111111111111111110< ⋅ 2;<=

diff = 0.00000000000000000000001< ⋅ 2;<= = 1< ⋅ 2;<=:<E = 𝟐𝟏𝟎𝟒



Another Way to View Them

• Sign bit

• Window into two consecutive powers of two
• [0.5, 1], [1, 2], [2, 4], …, [2127, 2128]

• Offset dividing the window into 223 buckets
• Finer grained near zero

Credit to Fabien Sanglard: https://fabiensanglard.net/floating_point_visually_explained/

https://fabiensanglard.net/floating_point_visually_explained/


• Example 1: Is (x + y) + z  =  x + (y + z)?
• Ints: Yes!
• Floats:
• (2^30 + -2^30) + 3.14 ➙ 3.14
• 2^30 + (-2^30 + 3.14) ➙ 0.0

Correctness



Floating Point in C
• C Guarantees Two Levels
• float single precision (32 bits)
• double double precision (64 bits)

• Conversions/Casting
• Casting between int, float, and double changes bit 
representation
• double/float → int

• Truncates fractional part
• Like rounding toward zero
• Not defined when out of range or NaN: Generally sets to TMin

• int → double
• Exact conversion, 

• int → float
• Will round



Exercise 6: Casting with Floats
• Assume you have three variables: an int x, a float f, and a 

double d. Assume that all three variables store numeric 
values (not +∞,−∞, or NaN). Which of the following 
expressions are guaranteed to evaluate to True?
1. x == (int)(double)(x) 
2. x == (int)(float)(x)
3. d == (double)(float) d
4. f == (float)(double) f



Exercise 6: Casting with Floats
• Assume you have three variables: an int x, a float f, and a 

double d. Assume that all three variables store numeric 
values (not +∞,−∞, or NaN). Which of the following 
expressions are guaranteed to evaluate to True?
1. x == (int)(double)(x) 
2. x == (int)(float)(x)
3. d == (double)(float) d
4. f == (float)(double) f

True
False
False
True



Floating Point Operations
• All the bitwise and logical operations still work
• Float arithmetic operations done by separate hardware 

unit (FPU)


