Lecture 3: Representing Signed Integers

CS 105

Memory: A (very large) array of bytes

. bytes
- Memory is an array of-bie~

- A byte is a unit of eight bits

- An index into the array is an address,
location, or pointer

- Often expressed in hexadecimal

- We speak of the value in memory at
an address

- The value may be a single byte ...

- ... or a multi-byte quantity starting
at that address

00110111

11010001

01010011

01101100

Base-2 Integers (aka Binary Numbers)

128 (27) 64 (2) 32(25) 16(24) 8(23) 4(22) 2(2) 1(29

Representing Signed Integers

- Option 1: sign-magnitude
- One bit for sign; interpret rest as magnitude

Representing Signed Integers

- Option 2: one’s-complement
- Complement all bits

Representing Signed Integers

- Option 3: two’s complement
- Most used, like one’s complement, but with one zero value
- Like unsigned, except the high-order contribution is negative
- Signed(x) = —xy_1 - 2V 1+ YW 2 x; - 2

Two’s Complement Signed Integers

- “Signed” does not mean “negative”

- High order bit is the sign bit

- To negate, complement all the bits and add 1
- Arithmetic is the same as unsigned—same circuitry

- (Error conditions and comparisons are different)

Example: Three-bit integers

unsigned signed

111 7

110 6

101 5

100 4

011 3 011

010 2 010

001 1 001

000 O 000
-1 111
—2 110
-3 101

—4 100

Example: Three-bit integers

unsigned

111
110
101
100
011
010
001
000

OFR NWDOI O N

signed

011
010
001
000
111
110
101
100

= The high-order bit is the sign bit.

e The largest unsigned value is

11...1, UMax.

e The signed value for —1 is always
11...1.

e Signed values range between TMin
and TMax.

This representation of signed values is
called two’s complement.

Important Signed Numbers

w8 | 16 | 32 | 64

OX7FFF
0x8000
0x0000
OXFFFF

OX7FFFFFFF
0x80000000
0Xx00000000
OXFFFFFFFF

OX7FFFFFFFFFFFFFFF
0x800000000VVVL
0X00000000000VVL
OXFFFFFFFFFFFFFFFF

Exercise 1: Signed Integers

Assume an 8 bit (1 byte) signed integer representation
using two’s complement:

- What is the binary representation for 477 00101111
- What is the binary representation for -477? 11010001
- What is the number represented by 100001107 -122

- What is the number represented by 001001017 37

Casting between Numeric Types

- Casting from shorter to longer types preserves the value

- Casting from longer to shorter types drops the high-order
bits (modulus)

- Casting between signed/unsigned types preserves the
bits (it just changes the interpretation)

- Implicit casting occurs in assignments and parameter
lists. In mixed expressions, signed values are implicitly

cast to unsigned
- Source of many errors!

Exercise 2: Casting

- Assume you have a machine with 6-bit integers/3-bit shorts
- Assume variables: int x = -17; short sy = -=-3;
- Complete the following table

| Expression | Decimal | Binary
X -17

sy -3
(unsigned) x

(int) sy
(short) x

Exercise 2: Casting

- Assume you have a machine with 6-bit integers/3-bit shorts
- Assume variables: int x = -17; short sy = -=-3;
- Complete the following table

mm
101111
sy -3 101
(unsigned) x 47 101111
(int) sy -3 111101

(short) x -1 111

When to Use Unsigned

- Rarely

- When doing multi-precision arithmetic, or when you need
an extra bit of range ... but be careful!

unsigned i;
for (i = cnt-2; i >= 0; i--){
af[i] += a[i+l];

}

Arithmetic Logic Unit (ALU)

- A circuit that performs bitwise operations and arithmetic
on integer binary types

Status examples: Integer Integer

« Carry-out Operand Operand

« Zero * #

* Negative

« Overflow A A B

: Status

e parity Status
Opcode Y

Opcode examples:

 Add, Subtract *

* Increment, Decrement Integer

« AND, OR, XOR Result

Shift, Rotate

Bitwise vs Logical Operations in C

- Bitwise Operators &, |, ~, A
- View arguments as bit vectors
- operations applied bit-wise in parallel

- Logical Operators &&, |, !
- View 0 as “False”
- View anything nonzero as “True”
- Always return 0 or 1
- Short-circuit termination

- Shift operators <<, >>

- Left shift fills with zeros
- For signed integers, right shift is arithmetic (fills with high-order bit)

Exercise 3: Bitwise vs Logical Operations

- Assume signed char data type (one byte)

120
120
120
120

-106
-106
-106
-106

& &
N

<<
<<
>>
>>

85
85
85
85

NN S

~11100010
11100010

01111000

01111000

01111000
01111000

10010110
10010110
10010110
10010110

&

|
&&

<<
<<
>>
>>

00011101

00000000 = O

01010101

01010101

01010101
01010101

N BN

01100000
01011000
11111001
11100101

29

01010000

01111101

00000001
00000001

96
883
=7
=277

80
125

Addition/Subtraction Example

- Compute 5 + -3 assuming all ints are stored as
four-bit signed values

1 1
0101

+ 1101
O0O10 =2(Base-10)

Exactly the same as unsigned numbers!
... but with different error cases

Addition/Subtraction with Overflow

- Compute 5 + 3 assuming all ints are stored as
four-bit signed values

111
0101

+ 0011
1000 =-8(Base-10)

Error Cases

- Assume w-bit signed values

—2 .w-1 —w-1 0 w-1 2. pw-1
® ® ® ® o—

[)

representable values

Possible values of x + y

x+y — 2% (positive overflow)
c x4l y=<x+y (normal)
x+y+2Y (negative overflow)

- overflow has occurred iff x >0andy > 0and x +f, y < 0
orx<O0andy<Oandx+{ y>0

Exercise 4: Binary Addition

- Given the following 5-bit signed values, compute their
sum and indicate whether an overflow occurred

x|y | xty loverflow?

00010 00101
01100 00100
10100 10001

Exercise 4: Binary Addition

- Given the following 5-bit signed values, compute their
sum and indicate whether an overflow occurred

x|y | xiy | overflow?

00010 00101 00111
01100 00100 10000 yes
10100 10001 00101 yes

Multiplication Example

- Compute 3 x 2 assuming all ints are stored as
four-bit signed values
o011

Xo0010

O0O0O0
+0011
O11 0O =6 (Base-10)

Exactly like unsigned multiplication!
... except with different error cases

Multiplication Example

- Compute 5 x 2 assuming all ints are stored as
four-bit signed values

0101
Xo0010

o000
+01 01
101 0 =-6(Base-10)

Error Cases
- Assume w-bit unsigned values
_22(W—1) —ow-1 0 ow—1 ZZ(W_l)
@ @ o O o—

[
L
representable values

—
Nl

Possible values of x %y

e x *L, vy = U2T((x - y) mod 2V)

Exercise 5: Binary Multiplication

- Given the following 3-bit signed values, compute their
product and indicate whether an overflow occurred

x|y | xy loverflow?
100

101
010 011
111 010

Exercise 5: Binary Multiplication

- Given the following 3-bit signed values, compute their
product and indicate whether an overflow occurred

x|y | xty |overflow?
100 101 100 yes

010 011 110 yes
111 010 110 no

