Lecture 3: Representing Signed Integers

CS 105

Memory: A (very large) array of bytes

- Memory is an array of bits
- A byte is a unit of eight bits
- An index into the array is an address, location, or pointer
 - Often expressed in hexadecimal
- We speak of the value in memory at an address
 - The value may be a single byte ...
 - ... or a multi-byte quantity starting at that address

Base-2 Integers (aka Binary Numbers)

Representing Signed Integers

- Option 1: sign-magnitude
 - One bit for sign; interpret rest as magnitude

Representing Signed Integers

- Option 2: one's-complement
 - Complement all bits

Representing Signed Integers

- Option 3: two's complement
 - Most used, like one's complement, but with one zero value
 - Like unsigned, except the high-order contribution is negative
 - $Signed(x) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$

Two's Complement Signed Integers

- "Signed" does not mean "negative"
- High order bit is the sign bit
 - To negate, complement all the bits and add 1
- Arithmetic is the same as unsigned—same circuitry
- (Error conditions and comparisons are different)

Example: Three-bit integers

unsigned		signed
111	7	
110	6	
101	5	
100	4	
011	3	011
010	2	010
001	1	001
000	0	000
	-1	111
	-2	110
	-3	101
	-4	100

Example: Three-bit integers

unsigned		signed
111	7	
110	6	
101	5	
100	4	
011	3	011
010	2	010
001	1	001
000	0	000
	-1	111
	-2	110
	-3	101
	-4	100

- The high-order bit is the sign bit.
- The largest unsigned value is 11...1, UMax.
- The signed value for -1 is always 11...1.
- Signed values range between TMin and TMax.

This representation of signed values is called *two's complement*.

Important Signed Numbers

W	8	16	32	64
Max	0x7F	0x7FFF	0x7FFFFFF	0x7FFFFFFFFFFFFF
Min	0x80	0x8000	0×80000000	0x8000000000000000
0	0x00	0x0000	0x00000000	0×0000000000000000
-1	0xFF	0xFFFF	0xFFFFFFF	0xffffffffffffff

Exercise 1: Signed Integers

Assume an 8 bit (1 byte) signed integer representation using two's complement:

What is the binary representation for 47?

What is the binary representation for -47?

What is the number represented by 10000110? -122

What is the number represented by 00100101?

Casting between Numeric Types

- Casting from shorter to longer types preserves the value
- Casting from longer to shorter types drops the high-order bits (modulus)
- Casting between signed/unsigned types preserves the bits (it just changes the interpretation)
- Implicit casting occurs in assignments and parameter lists. In mixed expressions, signed values are implicitly cast to unsigned
 - Source of many errors!

Exercise 2: Casting

- Assume you have a machine with 6-bit integers/3-bit shorts
- Assume variables: int x = -17; short sy = -3;
- Complete the following table

Expression	Decimal	Binary
X	-17	
sy	-3	
(unsigned) x		
(int) sy		
(short) x		

Exercise 2: Casting

- Assume you have a machine with 6-bit integers/3-bit shorts
- Assume variables: int x = -17; short sy = -3;
- Complete the following table

Expression	Decimal	Binary
X	-17	101111
sy	-3	101
(unsigned) x	47	101111
(int) sy	-3	111101
(short) x	-1	111

When to Use Unsigned

- Rarely
- When doing multi-precision arithmetic, or when you need an extra bit of range ... but be careful!

```
unsigned i;
for (i = cnt-2; i >= 0; i--){
    a[i] += a[i+1];
}
```

Arithmetic Logic Unit (ALU)

 A circuit that performs bitwise operations and arithmetic on integer binary types

Status examples:

- Carry-out
- Zero
- Negative
- Overflow
- parity

Opcode examples:

- Add, Subtract
- Increment, Decrement
- AND, OR, XOR
- Shift, Rotate

Bitwise vs Logical Operations in C

- Bitwise Operators &, I, ~, ^
 - View arguments as bit vectors
 - operations applied bit-wise in parallel
- Logical Operators &&, II, !
 - View 0 as "False"
 - View anything nonzero as "True"
 - Always return 0 or 1
 - Short-circuit termination
- Shift operators<<, >>
 - Left shift fills with zeros
 - For signed integers, <u>right shift is arithmetic</u> (fills with high-order bit)

Exercise 3: Bitwise vs Logical Operations

Assume signed char data type (one byte)

```
= \sim 11100010 = 00011101 = 29
• \sim (-30)
                = !11100010 = 00000000 = 0
·! (-30)
                = 01111000 & 01010101 = 01010000 = 80
• 120 & 85
                = 01111000 \mid 01010101 = 01111101 = 125
• 120 | 85
                = 01111000 \&\& 01010101 = 00000001 = 1
• 120 && 85
                = 01111000 \mid \mid 01010101 = 00000001 = 1

    120 | | 85

• -106 << 4
                = 10010110 << 4 = 01100000 = 96
• -106 << 2
                = 10010110 << 2 = 01011000 = 88
-106 >> 4
                = 10010110 >> 4 = 11111001 = -7
                = 10010110 >> 2 = 11100101 = -27
• -106 >> 2
```

Addition/Subtraction Example

 Compute <u>5 + -3</u> assuming all ints are stored as four-bit signed values

Exactly the same as unsigned numbers!
... but with different error cases

Addition/Subtraction with Overflow

 Compute <u>5 + 3</u> assuming all ints are stored as four-bit signed values

$$111$$
 0101
 $+0011$
 $1000 = -8 \text{ (Base-10)}$

Error Cases

Assume w-bit signed values

•
$$x +_{w}^{t} y = \begin{cases} x + y - 2^{w} & \text{(positive overflow)} \\ x + y & \text{(normal)} \\ x + y + 2^{w} & \text{(negative overflow)} \end{cases}$$

• overflow has occurred iff x > 0 and y > 0 and $x +_w^t y < 0$ or x < 0 and y < 0 and $x +_w^t y > 0$

Exercise 4: Binary Addition

 Given the following 5-bit signed values, compute their sum and indicate whether an overflow occurred

X	у	x+y	overflow?
00010	00101		
01100	00100		
10100	10001		

Exercise 4: Binary Addition

 Given the following 5-bit signed values, compute their sum and indicate whether an overflow occurred

X	у	х+у	overflow?
00010	00101	00111	no
01100	00100	10000	yes
10100	10001	00101	yes

Multiplication Example

 Compute 3 x 2 assuming all ints are stored as four-bit signed values

$$0011$$
 0010
 0000
 $+0010$
 0110
 0110
 0110 = 6 (Base-10)

Exactly like unsigned multiplication! ... except with different error cases

Multiplication Example

 Compute 5 x 2 assuming all ints are stored as four-bit signed values

$$0101$$
 0000
 $+01010$
 $1010 = -6 \text{ (Base-10)}$

Error Cases

Assume w-bit unsigned values

• $x *_w^t y = U2T((x \cdot y) \mod 2^w)$

Exercise 5: Binary Multiplication

 Given the following 3-bit signed values, compute their product and indicate whether an overflow occurred

X	у	x*y	overflow?
100	101		
010	011		
111	010		

Exercise 5: Binary Multiplication

 Given the following 3-bit signed values, compute their product and indicate whether an overflow occurred

X	у	x*y	overflow?
100	101	100	yes
010	011	110	yes
111	010	110	no