
CS 105

Lecture 2: Representing Integers

Abstraction

2

Memory: A (very large) array of bytes
• Memory is an array of bits

• A byte is a unit of eight bits

• An index into the array is an address,
location, or pointer
• Often expressed in hexadecimal

• We speak of the value in memory at
an address
• The value may be a single byte …
• … or a multi-byte quantity starting

at that address
1
0

1
0

0
0

1
1

0
1

1
0

1
1

0
0

0
1

1
1

0
1

0
0

1
1

0
0

1
1

1
0

0

1

2

3

01101100

01010011

11010001

00110111

bytes

3

Representing Integers
• Arabic Numerals: 47

• Roman Numerals: XLVII

• Brahmi Numerals:

• Tally Marks: IIII IIII IIII IIII IIII IIII IIII IIII IIII II

4

Base-10 Integers
1000 (103) 100 (102) 10 (101) 1 (100)

0 0 0 5

0 0 4 7

1 8 8 7

5

Storing bits
• Static random access memory (SRAM):

stores each bit of data in a flip-flop, a
circuit with two stable states

• Dynamic Memory (DRAM): stores each
bit of data in a capacitor, which stores
energy in an electric field (or not)

• Magnetic Disk: regions of the platter are
magnetized with either N-S polarity or
S-N polarity

• Optical Disk: stores bits as tiny
indentations (pits) or not (lands) that
reflect light differently

• Flash Disk: electrons are stored in one of
two gates separated by oxide layers

6

Base-2 Integers (aka Binary Numbers)
128 (27) 64 (26) 32 (25) 16 (24) 8 (23) 4 (22) 2 (21) 1 (20)

0 0 0 0 0 1 0 1

0 0 1 0 1 1 1 1

1 1 1 1 1 1 1 1

7

Binary Numbers
• Decimal (Base-10):

• Binary (Base-2):

4211
= 4 ⋅ 10! + 2 ⋅ 10" + 1 ⋅ 10# + 1 ⋅ 10$

= 4211

1011
= 1 ⋅ 2! + 0 ⋅ 2" + 1 ⋅ 2# + 1 ⋅ 2$

= 11

8

Exercise 1: Binary Numbers
• Consider the following four-bit binary values. What is the

(base-10) integer interpretation of these values?
1. 0001

2. 1010

3. 0111
4. 1111

= 0 ⋅ 2! + 0 ⋅ 2" + 0 ⋅ 2# + 1 ⋅ 2$ = 1
= 1 ⋅ 2! + 0 ⋅ 2" + 1 ⋅ 2# + 0 ⋅ 2$ = 8 + 2 = 10
= 0 ⋅ 2! + 1 ⋅ 2" + 1 ⋅ 2# + 1 ⋅ 2$ = 4 + 2 + 1 = 7
= 1 ⋅ 2! + 1 ⋅ 2" + 1 ⋅ 2# + 1 ⋅ 2$ = 8 + 4 + 2 + 1 = 15

10

Exercise 2: Binary Number Range
• What are the max number and min number that can be

represented by a w-bit binary number?
1. w = 3

2. w = 4

3. w = 8

• What is the general equation?
• 2! − 1

13

max = 111" = 2" + 2# + 2$ = 7#$min = 000" = 0#$

max = 1111" = 2! + 2" + 2# + 2$ = 15#$min = 0000" = 0#$

= 11111111" = 2% + 2& + 2' + 2(

+2! + 2" + 2# + 2$
= 255#$

min = 00000000" = 0#$ max

Unsigned Integers in C

C Data Type Size (bytes)

unsigned char 1

unsigned short 2

unsigned int 4

unsigned long 8

14

For x86_64

Unsigned -> Cannot represent negative numbers.

ASCII characters
Char Dec Binary

! 33 00100001

" 34 00100010

35 00100011

$ 36 00100100

% 37 00100101

& 38 00100110

' 39 00100111

(40 00101000

) 41 00101001

* 42 00101010

+ 43 00101011

, 44 00101100

- 45 00101101

. 46 00101110

/ 47 00101111

0 48 00110000

Char Dec Binary

1 49 00110001

2 50 00110010

3 51 00110011

4 52 00110100

5 53 00110101

6 54 00110110

7 55 00110111

8 56 00111000

9 57 00111001

: 58 00111010

; 59 00111011

< 60 00111100

= 61 00111101

> 62 00111110

? 63 00111111

@ 64 01000000

Char Dec Binary

A 65 01000001

B 66 01000010

C 67 01000011

D 68 01000100

E 69 01000101

F 70 01000110

G 71 01000111

H 72 01001000

I 73 01001001

J 74 01001010

K 75 01001011

L 76 01001100

M 77 01001101

N 78 01001110

O 79 01001111

P 80 01010000

Char Dec Binary

Q 81 01010001

R 82 01010010

S 83 01010011

T 84 01010100

U 85 01010101

V 86 01010110

W 87 01010111

X 88 01011000

Y 89 01011001

Z 90 01011010

[91 01011011

\ 92 01011100

] 93 01011101

^ 94 01011110

_ 95 01011111

` 96 01100000

Char Dec Binary

a 97 01100001

b 98 01100010

c 99 01100011

d 100 01100100

e 101 01100101

f 102 01100110

g 103 01100111

h 104 01101000

i 105 01101001

j 106 01101010

k 107 01101011

l 108 01101100

m 109 01101101

n 110 01101110

o 111 01101111

p 112 01110000

15

https://www.ascii-code.com/

https://www.ascii-code.com/

Hexidecimal Numbers (Base 16)

00101100 00110101 00110000 11100001 Dec Hex

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

a

b

c

d

e

f

2 c 3 5 3 0 e 1

0x2c3530e1

16

How many binary digits can you represent
with a single hexadecimal (base 16) digit?

Exercise 3: Hexidecimal Numbers
• Consider the following hexidecimal values. What is the

representation of each value in (1) binary and (2) decimal?
1. 0x0a

2. 0x11

3. 0x2f

= 00001010" = 10#$
= 00010001" = 17#$
= 00101111" = 47#$

18

Endianness
• Big Endian: low-order bits go on the right (47)
• I tend to think in big endian numbers, so examples in class will

generally use this representation
• Networks generally use big endian (aka network byte order)

• Little Endian: low-order bits go on the left (74)
• Most modern machines use this representation

• I will try to always be clear about whether I'm using a big
endian or little endian representation

• When in doubt, ask!

20

Arithmetic Logic Unit (ALU)
• A circuit that performs bitwise operations and arithmetic

on integer binary types

21

Status examples:
• Carry-out
• Zero
• Negative
• Overflow
• parity

Opcode examples:
• Add, Subtract
• Increment, Decrement
• AND, OR, XOR
• Shift, Rotate

Bitwise vs Logical Operations in C
• Bitwise Operators &, |, ~, ^

• View arguments as bit vectors
• operations applied bit-wise in parallel

• Logical Operators &&, ||, !
• View 0 as “False”
• View anything nonzero as “True”
• Always return 0 or 1
• Short-circuit termination

• Shift operators <<, >>
• Left shift fills with zeros
• For unsigned integers, right shift is logical (fills with zeros)

22

Exercise 4: Bitwise vs Logical Operations
Assume unsigned char data type (one byte). What do each
of the following expressions evaluate to (interpreted as
unsigned integers and expressed base-10)?

1. ~226
2. !226

3. 120 & 85
4. 120 | 85
5. 120 && 85
6. 120 || 85

7. 81 << 4
8. 81 << 2
9. 81 >> 4
10.81 >> 2

24

= ~11100010

= !11100010 = 00000000 = 0

= 01111000 & 01010101
= 01111000 | 01010101 = 01111101 = 125
= 01111000 && 01010101 = 00000001 = 1

= 01111000 || 01010101 = 00000001 = 1

= 01010001 << 4
= 01010001 << 2 = 01000100 = 68
= 01010001 >> 4 = 00000101 = 5
= 01010001 >> 2 = 00010100 = 20

= 00011101

= 01010000 = 80

= 29

= 00010000 = 16

Example: Using Bitwise Operations

25

What do these operations do?

x << 2

• "multiply by 4"

x & 1

• “x is odd”

(x + 7) & 0xFFFFFFF8

• “round up to a multiple of 8”

Addition Example
• Compute 5 + 6 assuming all ints are stored as

eight-bit (1 byte) unsigned values

Like you learned in grade school, only binary!

0 0 0 0 0 1 0 1
+ 0 0 0 0 0 1 1 0

1 1 0 1

1

… and with a finite number of digits

0 0 0 0 = 11 (Base-10)

26

Addition Example with Overflow
• Compute 200 + 100 assuming all ints are stored as

eight-bit (1 byte) unsigned values

Like you learned in grade school, only binary!

1 1 0 0 1 0 0 0
+ 0 1 1 0 0 1 0 0

0 0 1 1

… and with a finite number of digits

0 1 0 0

1 1

= 44 (Base-10)

27

Error Cases
• Assume 𝑤-bit unsigned values

• 𝑥 +45 𝑦 = +
𝑥 + 𝑦 (normal)
𝑥 + 𝑦 − 24 (over7low)

• Overflow occurred if and only if 𝑥 +45 𝑦 < 𝑥

0 2) 2 ⋅ 2)

[)
representable values
[)Possible values of 𝑥 + 𝑦

28

Exercise 5: Binary Addition
• Given the following 5-bit unsigned values, compute their

sum and indicate whether an overflow occurred

x y x+y overflow?
00010 00101

01100 00100

10100 10001

29

Exercise 5: Binary Addition
• Given the following 5-bit unsigned values, compute their

sum and indicate whether an overflow occurred

x y x+y overflow?
00010 00101

01100 00100

10100 10001

00111

10000

00101

no
no
yes

30

Multiplication Example
• Compute 5 x 6 assuming all ints are stored as

eight-bit (1 byte) unsigned values

Like you learned in grade school, only binary!

0 0 0 0 0 1 0 1
x 0 0 0 0 0 1 1 0

… and with a finite number of digits

= 30 (Base-10)

0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0

+ _ 0 0 0 0 0 1 0 1 0 0
0 0 0 1 1 1 1 0

31

Multiplication Example
• Compute 200 x 3 assuming all ints are stored as

eight-bit (1 byte) unsigned values

Like you learned in grade school, only binary!

1 1 0 0 1 0 0 0
x 0 0 0 0 0 0 1 1

… and with a finite number of digits

= 88 (Base-10)

1 1 0 0 1 0 0 0
+ _ 1 1 0 0 1 0 0 0 0

0 1 0 1 1 0 0 0 1 0

32

Error Cases
• Assume 𝑤-bit unsigned values

• 𝑥 ∗45 𝑦 = 𝑥 ⋅ 𝑦 mod 24

0 2) 2) ⋅ 2)

[)
representable values
[)

Possible values of 𝑥 ∗ 𝑦

33

Exercise 6: Binary Multiplication
• Given the following 3-bit unsigned values, compute their

product and indicate whether an overflow occurred

x y x*y overflow?
100 101

010 011

111 010

34

Exercise 6: Binary Multiplication
• Given the following 3-bit unsigned values, compute their

product and indicate whether an overflow occurred

x y x*y overflow?
100 101

010 011

111 010

100

110

110

yes
no
yes

35

Multiplying with Shifts
• Multiplication is slow
• Bit shifting is kind of like multiplication, and is often faster

• What is “x << 3”?
• x * 8 = x << 3

• How could you perform “x * 10” with shifts and addition?
• x * 10 = x << 3 + x << 1

• Most compilers will automatically replace multiplications
with shifts where possible

36

