Lecture 1: Introduction to Computer Systems

CS 105

Abstraction

Correctness

Performance

Correctness

- Example 1: Is “x* > 0"?

- Floats: Yes!
e Ints; ?7?7?

- DEMO

Correctness

- Example 1: Is “x* > 0”?

- Floats: Yes!
e Ints; ?7?7?

- 40000 * 40000 - 1600000000

- 50000 * 50000 — ?7?

- Example 2: Is “ (x + vy)

- Ints: Yes!
- Floats; ???
- DEMO

Source: xkcd.com/571

leoe2...

%— £
LA A AN

... 1,306... 1,307...

BAAA

oD
/[P'—m

-

... 32/767...-32,768...

275

k=]

. 0.=32,767...-32,766 ...

+ Z

X

|

Correctness

- Example 1: Is “x* > 0”?

- Floats: Yes!
e Ints; ?7?7?

- 40000 * 40000 - 1600000000

Source: xkcd.com/571

« 50000 * 50000 — ?7? boos 2 o 1306... 1,307... | [...32767..-32%8..] [-32767... 327 ...
2 o SN o T ool N e
Tl | m B e
LN AN AN WA A AN L ; %;i"
-Example 2:Is “(x + y) + z = x + (y + 2)”?
. Ints: Yes!
- Floats:

. (2730 + -2A30) + 3.14 — 3.14
. 2730 + (-2A30 + 3.14) — 27

Performance

How do these function compare asymptotically?

void copyij(int src[2048] [2048], void copyji(int src[2048] [2048],
int dst[2048][2048]) { int dst[2048][2048]) {

int i,3;
for (i = 0; i <
for (3 = 0; 3
dst[i] []] =
}
}
}

2048; i++){
< 2048; j++)
src[i] []]-

4.3ms

int i,3;
for (5 = 0; j < 2048; j++) {
é:=’<=:: for (i = 0; i < 2048; i++){
dst[i] [j] = src[il[j];

}

}
}

81.8ms

- Hierarchical memory organization

- Performance depends on access patterns
- Including how step through multi-dimensional array

Security

void admin stuff (int authenticated) {
if (authenticated) {
// do admin stuff

}

int dontTryThisAtHome (char * user input, int size) ({
char data[size];
int ret = memcpy (*user input, data);
return ret;

Let’s start at the beginning... Bits

Bits
- a bit is a binary digit that can have two possible values

- can be physically represented with a two-state device

Storing bits

- Static random-access memory (SRAM):
stores each bit of data in a flip-flop, a
circuit with two stable states

- Dynamic Memory (DRAM): stores each
bit of data in a capacitor, which stores
energy in an electric field (or not)

- Magnetic Disk: regions of the platter are
magnetized with either N-S polarity or
S-N polarity

- Optical Disk: stores bits as tiny
indentations (pits) or not (lands) that
reflect light differently

- Flash Disk: electrons are stored in one of
two gates separated by oxide layers

Boolean Algebra
- Developed by George Boole in 19th Century

- Algebraic representation of logic---encode “True” as 1 and

“False” as 0
And &0 1
O[O0 O
1(0 1
Not ;_
Of1
1(0

Or

Exclusive-Or (Xor)

o

A

— O |0

O—L—L

Exercise 1: Boolean Operations

- Evaluate each of the following expressions
1. 1 | (-1)
2. ~(1| 1)
3. (~1) & 1
4. ~(1 "~ 1)

Exercise 1: Boolean Operations

- Evaluate each of the following expressions
1. 1 | (-1)
2. ~(1| 1)
3.

4. ~(1 "~ 1)

(~1) & 1

1| 0
~1
0 & 1
~0

1

0
0
1

Bytes and Memory

- Memory is an array of bits

Bytes and Memory

. bytes
- Memory is an array of-bie~

00110111

- A byte is a unit of eight bits

- An index into the array is an address,
location, or pointer 11010001

- Often expressed in hexadecimal

- We speak of the value in memory at
an address

- The value may be a single byte ... 1

- ... or a multi-byte quantity starting
at that address 01101100

01010011

General Boolean algebras

- Bitwise operations on bytes

01101001 01101001 01101001
& 01010101 | 01010101 “~ 01010101 ~ 01010101

01000001 01111101 00111100 10101010

- How does this map to set operations?

Exercise 2 : Bitwise Operations

- Assume:
a = 01101100

b = 10101010

- What are the results of evaluating the following Boolean
operations?

Exercise 2 : Bitwise Operations

- Assume:
a = 01101100

b = 10101010

- What are the results of evaluating the following Boolean

operations?

e ~a = ~01101100 = 10010011

- ~b = ~10101010 = 01010101

ea & b = 01101100 & 10101010 = 00101000
e a | b = 01101100 | 10101010 = 11101110
ea b = 01101100 © 10101010 = 11000110

Bitwise vs Logical Operations in C

- Bitwise Operators &, |, ~, A
- View arguments as bit vectors
- operations applied bit-wise in parallel

- Logical Operators &&, |, !
- View 0 as “False”
- View anything nonzero as “True”
- Always return 0 or 1
- With short circuiting

Exercise 3: Bitwise vs Logical Operations

~01000001
~00000000
- ~~01000001

101000001
- 100000000
- 1101000001

- 01101001 & 01010101
- 01101001 | 01010101

- 01101001 && 01010101
- 01101001 || 01010101

Exercise 3: Bitwise vs Logical Operations

~01000001
~00000000
- ~~01000001

101000001
- 100000000
- 1101000001

- 01101001 & 01010101
- 01101001 | 01010101

10111110
11111111
01000001

00000000
00000001
00000001

01000001
01111101

- 01101001 && 01010101 000001
- 01101001 || 01010101 00000001

Bit Shifting

. Left Shift: x << vy
- Shift bit-vector x left y positions

- Throw away extra bits on left
- Fill with 0’s on right

- Right Shift: x >> vy
- Shift bit-vector x right y positions

- Throw away extra bits on right
- Logical shift: Fill with 0's on left

- Arithmetic shift: Replicate most
significant bit on left

Undefined Behavior if you
shift amount < 0 or = word
size

Choice between logical and
arithmetic depends on the
type of data

Example: Bit Shifting

-01101001 << 4 10010000
- 01101001 >>, 2 00011010
-01101001 >>, 4 00000110

Exercise 4: Bit Shifting

.10101010 << 4 10100000
. 10101010 >>, 4 00001010
. 10101010 >>, 4 11111010

Bits and Bytes Require Interpretation

00000000 00110101 00110000 00110001
might be interpreted as

- The integer 3,485,745,

- A floating-point number close to 4.884569 x 10-3°
- The string “105”

- A portion of an image or video

- An address pointing to another place in memory
- Or... some user-defined type

Information is Bits + Context

