Reading

• Chapter 5.2 covers recursion/induction
• Chapter 5.3 has some design guidelines
• Chapter 6 covers sorting
Induction

• Mathematical technique for proving:
 • Mathematical statements over natural numbers
 • Complexity (big-o) of algorithm
 • The correctness of algorithms

• Intimately related to recursion
 • Inductive proofs reference themselves
Induction steps

• Let $P(n)$ be some proposition

• To prove $P(n)$ is true for all $n \geq 0$
 • (Step 1) Base case: Prove $P(0)$
 • (Step 2) Assume $P(k)$ is true for $k \geq 0$
 • (Step 3) Use this assumption to prove $P(k + 1)$
Practice Examples

• Prove $1 + 2 + \ldots + n = \frac{n(n + 1)}{2}$ for all $n \geq 1$

• Prove $2^0 + 2^1 + \ldots + 2^n = 2^{n+1} - 1$ for all $n \geq 0$

• Prove $2^n < n!$ for all $n \geq 4$
Selection Sort

1. Take the smallest element
2. Swap it with the first element
3. Repeat with the rest of the array
Selection Sort (helper)

```java
/*
 * @param array array of integers
 * @param endIndex valid index into array
 * @return index of largest value in array[0...endIndex]
 */
private int indexOfLargest(int[] array, int endIndex) {
    int largestIndex = 0;
    for (int i = largestIndex + 1; i < endIndex; i++) {
        if (array[i] > array[largestIndex]) {
            largestIndex = i;
        }
    }
    return largestIndex;
}
```
/**
 * @param array array of integers
 * @param endIndex a valid index into array
 */

private static void selectionSortRecursive(int[] array, int endIndex) {
 if(endIndex > 0) {

 // find largest element in rest of array
 int largest = indexOfLargest(array, endIndex);

 // move smallest element to position endIndex
 swap(array, largest, endIndex);

 // recurse on everything to the left of startIndex
 selectionSortRecursive(array, endIndex-1);
 }
}
Correctness of Selection Sort

For all $n \geq 0$ where $\text{array.length} > n$, after running `selectionSort(array,n)`, array[0…n] is sorted in non-descending order.

$P(n)$: After running `selectionSort(array,n)`, array[0...n] is sorted in non-descending order.

Base case: prove $P(0)$

`selectionSort(array,0)` does nothing, but array[0…0] has only one element and hence is in order.
Selection Sort - Induction

• Suppose $P(k)$ is true. i.e. if we call selectionSort(array,k), then array[0..k] will be in (non-descending) order

• Prove $P(k + 1)$:
 • Call of selectionSort(array,k+1) starts by finding index of largest element in array[0…k+1] and swaps with element in array[k+1].
 • By induction assumption, recursive call of selectionSort(array,k) leaves array[0…k] in order, and array[k+1] is larger, so array[0…k+1] is in order. ✔
Analysis

- Count number of comparisons of elts from array
 - All comparisons are in “indexOfLargest(array,n)”
 - At most n comparisons.
 - Prove # of comparisons in selectionSort(array,n) is $1 + 2 + \ldots + n$
 - Base case: $n = 0$: No comparisons
 - Assume true for selectionSort(array,k-1): $1 + 2 + \ldots + (k-1)$
 - Show for k elements:
 - $\text{indexOfLargest}(array,k)$ takes k comparisons,
 - swap takes none.
 - By induction selectionSort(array,k-1) takes $1 + 2 + \ldots + (k-1)$.
 - Therefore total: $1 + 2 + \ldots + (k-1) + k$
Complexity of Selection Sort

• If array has length n then $\text{selectionSort}(array,0)$ takes time $n(n - 1)/2$, so $O(n^2)$

• Iterative version of selection sort is in text.
Strong induction

• Sometimes need to assume more than just the previous case, so instead
 • Prove $P(0)$
 • Assumption holds for $P(j)$ for every $j = 0, \ldots, k$ in order to prove $P(k + 1)$.
FastPower

• \(fastPower(x, n) \) algorithm to calculate \(x^n \):
 • if \(n == 0 \) then return 1
 • if \(n \) is even, return \(fastPower(x^2, n/2) \)
 • if \(n \) is odd, return \(x \times fastPower(x, n-1) \)
FastPower - Proof by induction on n

- **Base case:** $n = 0$
 - $x^0 = 1$ and $fastPower(x, 0) = 1$

- **Assume** $fastPower(x, j)$ is x^j for all $j \leq k$.

- **Show** $fastPower(x, k + 1)$ is x^{k+1}

- **Case:** $k + 1$ is even
 - $fastPower(x, k + 1) = fastPower(x^2, (k + 1)/2) = (x^2)^{(k+1)/2} = x^{k+1}$

- **Case:** $k + 1$ is odd
 - $fastPower(x, k + 1) = x \times fastPower(x, k) = x \times x^k = x^{k+1}$