Lecture 37: Graphs IV

CS 62
Fall 2017
Kim Bruce & Alexandra Papoutsaki
Single Source Shortest Path Problem

- From a starting node s, find the shortest path (and its length) to all other (reachable) nodes
- The collection of all shortest paths form a tree, called... the shortest path tree!
- If all edges have the same weight, we can use BFS.
- Otherwise ...
Single Source Shortest Path Problem

• If all edges have weights ≥ 0 then use Dijkstra’s algorithm
• Essentially BFS with priority queue
• Priorities are best known distance to a node from s
• We can keep track of parent nodes to get shortest path
• Example of a greedy algorithm
Dijkstra’s algorithm (1956) pseudocode

Q = {}; //set with unvisited vertices
for (every vertex v in V) {
 dist[v] = Infinity;
 parents[v] = null;
 Q.add(v);
}

dist[s] = 0;
while (!Q.isEmpty()) {
 u = vertex in Q with min dist[u];
 Q.remove(u);
 for (every edge (u,v)) {
 tentative = dist[u] + weight(u,v);
 if (tentative < dist[v]) {
 dist[v] = tentative;
 parents[v] = u;
 }
 }
}

Dijkstra’s algorithm (1984) pseudocode

```plaintext
Q = new PriorityQueue();
for (every vertex v in V) {
    dist[v] = Infinity;
    parents[v] = null;
    Q.addWithPriority(v, dist[v]);
}
dist[s] = 0;
Q.addWithPriority(s, 0);
while (!Q.isEmpty()) {
    u = Q.extractmin();
    Q.remove(u);
    for (every edge (u, v)) {
        tentative = dist[u] + weight(u, v);
        if (tentative < dist[v]) {
            dist[v] = tentative;
            parents[v] = u;
            Q.reducePriority(v, tentative);
        }
    }
}
```
Run-time of Dijkstra

- Adding and removing from priority queue: $O(\log n)$
 - Each goes on and off once, so $O(n \log n)$
- `reduce_priority`: $O(\log n)$
 - Worst case, once for each edge, so $O(m \log n)$
- Total time: $O((m + n) \log n)$
Dijkstra on sample graph
Dijkstra on sample graph

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Init</td>
<td>0<sub>A</sub></td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>A</td>
<td>0<sub>A</sub></td>
<td>8<sub>A</sub></td>
<td>2<sub>A</sub></td>
<td>5<sub>A</sub></td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>C</td>
<td>0<sub>A</sub></td>
<td>8<sub>A</sub></td>
<td>2<sub>A</sub></td>
<td>4<sub>C</sub></td>
<td>7<sub>C</sub></td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>D</td>
<td>0<sub>A</sub></td>
<td>6<sub>D</sub></td>
<td>2<sub>A</sub></td>
<td>4<sub>C</sub></td>
<td>5<sub>D</sub></td>
<td>10<sub>D</sub></td>
<td>7<sub>D</sub></td>
<td>∞</td>
</tr>
<tr>
<td>E</td>
<td>0<sub>A</sub></td>
<td>6<sub>D</sub></td>
<td>2<sub>A</sub></td>
<td>4<sub>C</sub></td>
<td>5<sub>D</sub></td>
<td>10<sub>D</sub></td>
<td>6<sub>E</sub></td>
<td>∞</td>
</tr>
<tr>
<td>B</td>
<td>0<sub>A</sub></td>
<td>6<sub>D</sub></td>
<td>2<sub>A</sub></td>
<td>4<sub>C</sub></td>
<td>5<sub>D</sub></td>
<td>10<sub>D</sub></td>
<td>6<sub>E</sub></td>
<td>∞</td>
</tr>
<tr>
<td>G</td>
<td>0<sub>A</sub></td>
<td>6<sub>D</sub></td>
<td>2<sub>A</sub></td>
<td>4<sub>C</sub></td>
<td>5<sub>D</sub></td>
<td>8<sub>G</sub></td>
<td>6<sub>E</sub></td>
<td>12<sub>E</sub></td>
</tr>
<tr>
<td>F</td>
<td>0<sub>A</sub></td>
<td>6<sub>D</sub></td>
<td>2<sub>A</sub></td>
<td>4<sub>C</sub></td>
<td>5<sub>D</sub></td>
<td>8<sub>G</sub></td>
<td>6<sub>E</sub></td>
<td>11<sub>F</sub></td>
</tr>
<tr>
<td>H</td>
<td>0<sub>A</sub></td>
<td>6<sub>D</sub></td>
<td>2<sub>A</sub></td>
<td>4<sub>C</sub></td>
<td>5<sub>D</sub></td>
<td>8<sub>G</sub></td>
<td>6<sub>E</sub></td>
<td>11<sub>F</sub></td>
</tr>
</tbody>
</table>

Follow the subscripts to find shortest path from start to any vertex
Spanning Trees

• A spanning tree T of a graph G is a subset of the edges of G such that:
 • T contains no cycles and
 • Every vertex in G is connected to every other vertex using just the edges in T
• An unconnected graph has no spanning trees.
• A connected graph will have at least one spanning tree; it may have many
Minimum Spanning Trees

• A weighted graph is a graph that has a weight associated with each edge.
• If G is a weighted graph, the cost of a tree is the sum of the costs (weights) of its edges.
• A tree T is a minimum spanning tree of G iff:
 • it is a spanning tree and
 • there is no other spanning tree whose cost is lower than that of T.
Minimum Spanning Trees

- Application:
 - The cheapest way to lay cable that connects a set of points is along a minimum spanning tree that connects those points.

- Many algorithms exist to find minimum spanning trees, most run in $O(m \log m)$ time.

- In 1995 Karger, Klein & Tarjan found a linear time randomized algorithm, but there is no known linear time deterministic algorithm
Kruskal’s Algorithm

• Create forest F with no edges, using vertices in V
• Sort the edges in the graph by their weight (smallest to largest)
• For each edge e in sorted order:
 • if e connects two different trees in F, then add e to F
Kruskal on sample graph

(1,2):1
(2,3):2
(4,5):3
(6,7):3
(1,4):4
(2,5):4
(4,7):4
(3,5):5
(2,4):6
(3,6):6
(5,7):7
(5,6):8
Kruskal’s Algorithm pseudocode

A = {};
for(every vertex v in V) {
 make-set(v)
 for(every edge (u, v) ordered by increasing weight) {
 if(find (u) != find (v)) {
 A.add((u, v));
 union(u, v);
 }
 }
}
return A;

make-set(v) - makes a set from a single vertex v
find(v) - finds the set that v belongs to
union(u, v) - makes the union of the sets containing u and v

Union-find structure
Graph Algorithms

- Very important in practice!
- Sophisticated data structures
- Careful analysis of correctness and complexity
- CS 140: Algorithms