Lecture 28: More Parallelism

CS 62
Fall 2017
Kim Bruce & Alexandra Papoutsaki

Some slides based on those from Dan Grossman, U. of Washington

New CS Curriculum

- Being phased in
 - Multiple 51s in different languages
 - CS 52 and 55 replaced by 54: Discrete Math & Functional Programming
 - CS 62 not assume Java (S'19), not teach C (now)
 - CS 105 will teach C
 - Changes later to other advanced courses
 - Won't affect you

History

- Writing correct and efficient multithread code is more difficult than for single-threaded (sequential).
- From roughly 1980-2005, desktop computers got exponentially faster at running sequential programs
 - About twice as fast every 18 months to 2 years

More History

- Nobody knows how to continue this
- Increasing clock rate generates too much heat
- Relative cost of memory access is too high
- Can keep making “wires exponentially smaller” (Moore’s “Law”), so put multiple processors on the same chip (“ multicore”)
- Now double number of cores every 2 years!
Analogy

- **Typical CS1 idea:**
 - Writing a program is like writing a recipe for one cook who does one thing at a time!

- **Parallelism:**
 - Hire helpers, hand out potatoes and knives
 - But not too many chefs or you spend all your time coordinating (or you’ll get hurt!)

Shared Memory

Threads, each with own unshared call stack and current statement (pc for “program counter”) local variables are primitives/null or heap references

Heap for all objects and static fields

Other Models

- **Message-passing:**
 - Each thread has its own collection of objects. Communication is via explicit messages; language has primitives for sending and receiving them.
 - Cooks working in separate kitchens, with telephones

- **Dataflow:**
 - Programmers write programs in terms of a DAG and a node executes after all of its predecessors in the graph
 - Cooks wait to be handed results of previous steps

- **Data parallelism:**
 - Have primitives for things like “apply function to every element of an array in parallel”
CPU vs GPU

From Mythbusters:
https://www.youtube.com/watch?v=-P28LKWThrI&feature=youtu.be

In a bit more detail:
https://www.youtube.com/watch?v=1kypaBj-pg

To Use Library

- Create a ForkJoinPool
- Instead of subclass Thread, subclass RecursiveTask<V>
- Override compute, rather than run
- Return answer from compute rather than instance vble
- Call fork instead of start
- Call join that returns answer
- To optimize, call compute instead of fork (rather than run)
- See ForkJoinFrameworkDivideConquerPSum

Getting Good Results

- Documentation recommends 100-50000 basic ops in each piece of program
- Library needs to warm up, like rest of java, to see good results
- Works best with more processors (> 4)

Similar Problems

- Speed up to O(log n) if divide and conquer and merge results in time O(1).
- Other examples:
 - Find max, min
 - Find (leftmost) elt satisfying some property
 - Count elts satisfying some property
 - Histogram of test results
 - Called reductions
- Won’t work if answer to 1 subproblem depends on another (e.g. one to left)
Program Graph

- Program using fork and join can be seen as directed acyclic graph (DAG).
 - Nodes: pieces of work
 - Edges: dependencies - source must finish before start destination
 - Fork command finishes node and makes two edges out:
 - New thread & continuation of old
 - Join ends node & makes new node w/ 2 edges coming in

Performance

- Let T_P be running time if there are P processors
- Work = T_1 = sum of run-time of all nodes in DAG
- Span = T_∞ = sum of run-time of all nodes on most expensive path in DAG
- Speed-up on P processors = T_1 / T_P

What does it mean?

- Guarantee: $T_P = O((T_1 / P) + T_\infty)$
 - No implementation can beat $O(T_\infty)$ by more than constant factor.
 - No implementation on P processors can beat $O(T_1 / P)$
 - So framework on average gives best can do, assuming user did best possible.

- Bottom line:
 - Focus on your algos, data structures, & cut-offs rather than # processors and scheduling.
 - Just need T_1, T_∞, and P to analyze running time

Examples

- Recall: $T_P = O((T_1 / P) + T_\infty)$
- For summing:
 - $T_1 = O(n)$
 - $T_\infty = O(\log n)$
 - So expect $T_p = O(n/P + \log n)$
- If instead:
 - $T_1 = O(n^2)$
 - $T_\infty = O(n)$
 - Then expect $T_p = O(n^2/P + n)$
Amdahl’s Law

- Upper bound on speed-up!
 - Suppose the work (time to run w/one processor) is 1 unit time.
 - Let S be portion of execution that cannot be parallelized
 - $T_1 = S + (1 - S) = 1$
 - Suppose get perfect speedup on parallel portion.
 - $T_P = S + (1-S)/P$
 - Then overall speedup with P processors (Amdahl’s law):
 - $T_1/T_P = 1/(S + (1-S)/P)$
 - Parallelism (≈ processors) is: $T_1/T_P = 1/S$

Bad News!

- $T_1 / T_\infty = 1 / S$
- If 33% of program is sequential, then millions of processors won’t give speedup over 3.
- From 1980 - 2005, every 12 years gave 100x speedup
 - Now suppose clock speed is same but 256 processors instead of 1.
 - To get 100x speedup, need $100 \leq 1/(S + (1-S)/P)$
 - Solve to get solution $S \leq .0061$, so need 99.4% perfectly parallel.

Moral

- May not be able to speed up existing algos much, but might find new parallel algos.
- Can change what we compute
 - Computer graphics now much better in video games with GPU’s — not much faster, but much more detail.