Lecture 20:
Heaps & Heapsort

CS 62
Fall 2017
Kim Bruce & Alexandra Papoutsaki

Access Time

Registers: Typical access time: One clock cycle.

Cache: Tens to hundreds of clock cycles.

Main Memory: Hundreds of clock cycles.

Secondary Memory: Millions of clock cycles.

Removable memory: Tens of millions of clock cycles

3 Gb/s processor performs 3 billion clock cycles per second

Array Representation of Trees

- `data[0..n-1]` can hold values in trees
- left subtree of node `i` in `2*i+1`, right in `2*i+2`,
- parent in `(i-1)/2`

Indices: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
data[]: U O R C M E S — — — P T — — —
Min-Heap

- Min-Heap H is complete binary tree s.t.
 - H is empty, or
 - Both of the following hold:
 - The value in root position is smallest value in H
 - The left and right subtrees of H are also heaps.
 Equivalent to saying parent ≤ both left and right children
- Excellent implementation for priority queue
 - Dequeue elements w/lowest priority values before higher

Implementations

- As regular queue (array or linked) where either keep in order or search for lowest to remove:
 - One of add or remove will be O(n)
- Heap representation (in arraylist) is more efficient: O(log n) for both add and remove.
 - Insert into heap:
 - Place in next free position,
 - “Percolate” it up.
 - Delete:
 - remove root,
 - move last element in array up to root. “Push” it down.
Deleting from Heap

- Trickier!
- Remove top (smallest element)
- Move last element in array to top
 - *This is a large element!!*
- “Push” it down while larger than either child
 - *Swap with smallest child if larger than it.*
- What is worst case complexity?

See VectorHeap code

Called PriorityQueue class in standard Java

Sorting with Trees

Tree Sort

- Build Binary search tree (later)
- Do Inorder traversal, adding elts to array
 - Inorder traversal: O(n)
 - Building tree:
 - \(\log 1 + \log 2 + \ldots + \log n = O(n \log n)\) in best (& average) case
 - O(n\(^2\)) in worst case
 - O(n \log n) in best & average case
 - O(n\(^2\)) in worst case :-(
 - *What is worst case?*
 - Heapsort is always better!