
csci54 – discrete math & functional programming
choice and binomials

Counting
 sum rule:

 if A and B are disjoint, then |A ∪ B| = |A| + |B|
 “Difference rule”: |A| = |A U B| - |B|

 product rule:
 the number of pairs (x,y) where x ∈ A and y ∈ B is |A×B| = |

A|·|B|
 “Quotient rule”: If for each combination C we have R

redundant options, divide |C| by |R|

 inclusion-exclusion:
 |A ∪ B| = |A| + |B| - |A ∩ B|

Choice
 We can derive n choose k in different ways

 n! / (n-k)! (partial permutations)
 But for each set of choices, there are k! redundant

orderings
 = n! / ((n-k)! k!)

 Per wikipedia, this way was likely known to Indian
mathematicians in the 6th century CE

More practice questions
 Suppose two teams A and B play a best-of-three series of

games. How many different sequences of outcomes are there
in which A wins the overall series? What if they play a best-of-
five?

 How many 10-bit strings have at most 2 ones?

 How many solutions are there to the equation a+b+c=8 where
a, b, and c are all non-negative integers?

More practice questions
 There are 141 CS majors. How many ways are there to choose a

team of 3 CS majors?

 At the start of a programming contest, teams are given 10
questions to try to solve. At the start of the contest, each member
of the team has to choose a problem to think about first. (More
than one team member can think about the same problem.) How
many ways are there for the 3 team members to choose a problem
to think about first?

 Suppose that a team has calculated that they have time to code up
and submit 20 different attempted answers to the 10 questions in
the contest. How many different ways can they allocate their 20
submissions across the 10 problems? (The order of their
submissions doesn’t matter and they can submit more than once to
each question.)

Choice
 In the 10th century CE, Al-Karaji noticed this phenomenon:
 0C0 = 1
 1C0 = 1, 1C1 = 1
 2C0 = 1, 2C1 = 2, 2C2 = 1
 3C0 = 1, 3C1 = 3, 3C2 = 3, 3C3 = 1


In Europe, known later
as “Pascal’s Triangle”

Choice
 Laying out the numbers helps us notice a few things…

 nCk = nC(n-k)
 nCk = (n-1)C(k-1)+(n-1)C(k) for 0 < k < n

 To choose 2 from 3, we add up the ways
to choose 1 from 2 (which we can extend
with our new element) plus the ways to
choose 2 from 2 which don’t include
the new element

 This is sometimes called
“Pascal’s Rule”

The Binomial Theorem
 We’ve seen polynomials before

 ax^2 + bx + c, xy^3 + 2x - 7y + 5
 A binomial is a polynomial with two terms

 E.g. 2x^2 - y
 There’s a rich theory of binomials and

their applications, but we’ll focus on
the connection to combinatorics.



The Binomial Theorem
 Let’s look at a simple binomial like (x+y)n

 (x+y)(x+y) = x2+xy+xy+y2 = x2+2xy+y2

 (x+y)3 = x3 + 3x2y + 3xy2 + y3

 (x+y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4

 Check out these coefficients!

(x+y)n = ∑ nCk * xn-kyk

Choice
 Pascal’s Rule: for all n, 0<k<= n: nCk = (n-1)C(k-1)+(n-1)C(k)

 By induction on n; base cases 0C0 = 1, 1C0=1,1C1=1.
 IH: for all 0<k<=n’, n’Ck = (n’-1)C(k-1) + (n’-1)C(k)
 WTS: for all 0<k<=n’+1, (n’+1)Ck = n’C(k-1) + n’C(k)

Let k be given. By IH:
n’C(k-1) = n’! / (n’-(k-1))!(k-1)! = n’! k / (n’-(k-1))! k! and
n’C(k) = n’! / (n’-k)! k!

WTS: (n’+1)! / (n’+1-k)! k! = n’! k / (n’-k+1)! k! + n’! / (n’-k)! k!
= n’! ((k / ((n’+1)-k)! k!) + ((n’-k+1) / (n’-k+1)(n’-k)!k!))
= n’! ((k / ((n’+1)-k)! k!) + ((n’+1-k) / ((n’+1)-k)!k!)
= n’! ((n’+1) / (n’+1-k)! k!) = (n’+1)! / ((n’+1 - k)! k!) = (n’+1) C k

 Binomial Thm: (x+y)n = ∑ nCk xn-kyk

 By induction on n; base case n=0:0=0, n=1:1*x1 + 1*y1 = x+y
 IH: (x+y)n’=∑n’Ck xn’-kyk; WTS (x+y)n’+1=∑(n’+1)Ck xn’+1-kyk

 x(x+y)n’ + y(x+y)n’ = ∑(n’+1)Ck xn’+1-kyk

 By IH, (x+y)(∑n’Ck xn’-kyk) = x∑n’Ck xn’-kyk + y∑n’Ck xn’-kyk

= ∑n’Ck xn’-k+1yk+∑n’Ck xn’-kyk+1 .
Adjusting the bounds on the right sum to k=1 up to n’+1:
= ∑n’Ck xn’-k+1yk+∑n’C(k-1) xn’-(k-1)y(k-1)+1

Binomial Theorem

 WTS (x+y)n’+1=∑(n’+1)Ck xn’+1-kyk

 Have: (x+y)n’+1 = ∑n’Ck xn’-k+1yk+∑n’C(k-1) xn’-(k-1)y(k-1)+1

 For k=0 and k=n’+1, only the left or right sum has a term, but for
k=1 up to n’ they are both defined. So drop the first term from the
left sum and the last term from the right sum, and both are in the
k=1 up to n’ bounds:

 xn’+1 + ∑n’Ck xn’-k+1yk+∑n’C(k-1) xn’-k+1yk + yn’+1

= xn’+1 + ∑(n’Ck + n’C(k-1))xn’+1-kyk + yn’+1

 By Pascal’s Rule, n’C(k) + n’C(k-1) = (n’+1)Ck so:
= xn’+1 + ∑(n’+1)Ck xn’+1-kyk + yn’+1, which we can write as a sum
from k=0 up to n’+1 again.

Binomial Theorem

 The binomial theorem has many uses in factorization,
approximating transcendental numbers like e, finding roots, …

 e.g. to know about divisibility of an exponent by 10, you can
write a number like 17 as (10+7)^x and see if you can factor a
10 out of the resulting series

 At a minimum, it’s easy to do things like “compute the coefficient
of the kth term of (x+y)n” using choose

 Also shows up a lot in probability and statistics
 “Find a closed form of the sum ∑nCk”, “(x+1)n = ∑ nCk xn-k”, etc

What now?

	csci54 – discrete math & functional programming choice and bino
	Counting
	Choice
	More practice questions
	More practice questions (2)
	Choice (2)
	Choice (3)
	The Binomial Theorem
	The Binomial Theorem (2)
	Choice (4)
	Binomial Theorem
	Binomial Theorem (2)
	What now?

