
csci54 – discrete math & functional programming
choice and binomials



Counting
 sum rule: 

 if A and B are disjoint, then |A ∪ B| = |A| + |B|
 “Difference rule”: |A| = |A U B| - |B|

 product rule:
 the number of pairs (x,y) where x ∈ A and y ∈ B is |A×B| = |

A|·|B|
 “Quotient rule”: If for each combination C we have R 

redundant options, divide |C| by |R|

 inclusion-exclusion:
 |A ∪ B| = |A| + |B| - |A ∩ B| 



Choice
 We can derive n choose k in different ways

 n! / (n-k)! (partial permutations)
 But for each set of choices, there are k! redundant 

orderings
 = n! / ((n-k)! k!)

 Per wikipedia, this way was likely known to Indian 
mathematicians in the 6th century CE



More practice questions
 Suppose two teams A and B play a best-of-three series of 

games.  How many different sequences of outcomes are there 
in which A wins the overall series?  What if they play a best-of-
five? 

 How many 10-bit strings have at most 2 ones?

 How many solutions are there to the equation a+b+c=8 where 
a, b, and c are all non-negative integers?



More practice questions
 There are 141 CS majors.  How many ways are there to choose a 

team of 3 CS majors?

 At the start of a programming contest, teams are given 10 
questions to try to solve.  At the start of the contest, each member 
of the team has to choose a problem to think about first.  (More 
than one team member can think about the same problem.) How 
many ways are there for the 3 team members to choose a problem 
to think about first? 

 Suppose that a team has calculated that they have time to code up 
and submit 20 different attempted answers to the 10 questions in 
the contest. How many different ways can they allocate their 20 
submissions across the 10 problems? (The order of their 
submissions doesn’t matter and they can submit more than once to 
each question.) 



Choice
 In the 10th century CE, Al-Karaji noticed this phenomenon:
                   0C0 = 1
              1C0 = 1, 1C1 = 1
       2C0 = 1, 2C1 = 2, 2C2 = 1
 3C0 = 1, 3C1 = 3, 3C2 = 3, 3C3 = 1
  

In Europe, known later 
as “Pascal’s Triangle”



Choice
 Laying out the numbers helps us notice a few things…

 nCk = nC(n-k)
 nCk = (n-1)C(k-1)+(n-1)C(k) for 0 < k < n

 To choose 2 from 3, we add up the ways
to choose 1 from 2 (which we can extend
with our new element) plus the ways to
choose 2 from 2 which don’t include 
the new element

 This is sometimes called
“Pascal’s Rule”



The Binomial Theorem
 We’ve seen polynomials before

 ax^2 + bx + c, xy^3 + 2x - 7y + 5
 A binomial is a polynomial with two terms

 E.g. 2x^2 - y
 There’s a rich theory of binomials and

their applications, but we’ll focus on
the connection to combinatorics.

  



The Binomial Theorem
 Let’s look at a simple binomial like (x+y)n

 (x+y)(x+y) = x2+xy+xy+y2 = x2+2xy+y2

 (x+y)3 = x3 + 3x2y + 3xy2 + y3

 (x+y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4

 Check out these coefficients!

(x+y)n = ∑ nCk * xn-kyk



Choice
 Pascal’s Rule: for all n, 0<k<= n: nCk = (n-1)C(k-1)+(n-1)C(k)

 By induction on n; base cases 0C0 = 1, 1C0=1,1C1=1.
 IH: for all 0<k<=n’, n’Ck = (n’-1)C(k-1) + (n’-1)C(k)
 WTS: for all 0<k<=n’+1, (n’+1)Ck = n’C(k-1) + n’C(k)

Let k be given. By IH:
n’C(k-1) = n’! / (n’-(k-1))!(k-1)! = n’! k / (n’-(k-1))! k!   and
n’C(k) = n’! / (n’-k)! k!

WTS: (n’+1)! / (n’+1-k)! k! = n’! k / (n’-k+1)! k! + n’! / (n’-k)! k!
= n’! ( (k / ((n’+1)-k)! k!) + ((n’-k+1) / (n’-k+1)(n’-k)!k!) )
= n’! ( (k / ((n’+1)-k)! k!) + ((n’+1-k) / ((n’+1)-k)!k!)
= n’! ((n’+1) / (n’+1-k)! k!) = (n’+1)! / ((n’+1 - k)! k!) = (n’+1) C k



 Binomial Thm: (x+y)n = ∑ nCk xn-kyk

 By induction on n; base case n=0:0=0, n=1:1*x1 + 1*y1 = x+y
 IH: (x+y)n’=∑n’Ck xn’-kyk; WTS (x+y)n’+1=∑(n’+1)Ck xn’+1-kyk

 x(x+y)n’ + y(x+y)n’ = ∑(n’+1)Ck xn’+1-kyk

 By IH, (x+y)(∑n’Ck xn’-kyk) = x∑n’Ck xn’-kyk + y∑n’Ck xn’-kyk

= ∑n’Ck xn’-k+1yk+∑n’Ck xn’-kyk+1 . 
Adjusting the bounds on the right sum to k=1 up to n’+1:
= ∑n’Ck xn’-k+1yk+∑n’C(k-1) xn’-(k-1)y(k-1)+1

Binomial Theorem



 WTS (x+y)n’+1=∑(n’+1)Ck xn’+1-kyk

 Have: (x+y)n’+1 = ∑n’Ck xn’-k+1yk+∑n’C(k-1) xn’-(k-1)y(k-1)+1

 For k=0 and k=n’+1, only the left or right sum has a term, but for 
k=1 up to n’ they are both defined. So drop the first term from the 
left sum and the last term from the right sum, and both are in the 
k=1 up to n’ bounds:

 xn’+1 + ∑n’Ck xn’-k+1yk+∑n’C(k-1) xn’-k+1yk + yn’+1

= xn’+1 + ∑(n’Ck + n’C(k-1))xn’+1-kyk + yn’+1

 By Pascal’s Rule, n’C(k) + n’C(k-1) = (n’+1)Ck so:
= xn’+1 + ∑(n’+1)Ck xn’+1-kyk + yn’+1, which we can write as a sum 
from k=0 up to n’+1 again.

Binomial Theorem



 The binomial theorem has many uses in factorization, 
approximating transcendental numbers like e, finding roots, …

 e.g. to know about divisibility of an exponent by 10, you can 
write a number like 17 as (10+7)^x and see if you can factor a 
10 out of the resulting series

 At a minimum, it’s easy to do things like “compute the coefficient 
of the kth term of (x+y)n” using choose

 Also shows up a lot in probability and statistics
 “Find a closed form of the sum ∑nCk”, “(x+1)n = ∑ nCk xn-k”, etc

What now?
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