Structural Induction

Joseph C Osborn

April 28, 2025



Outline

Induction, Revisited

Structural Induction on Lists



Inductive "motors"

> \We've seen two inductive principles so far
» "Weak induction" over natural numbers
> P(0) A (Vx, P(x) = P(x+ 1)) = (Vx, P(x))
» "Strong induction" over natural numbers
> P(O) A (Vx,(Vy,y < x— P(y)) = P(x+1)) = (¥x, P(x))

> But we can imagine others



More "motors"

» "Induction over even numbers"

» "If P holds for an even number n, and we can show therefore P
holds for n+2, then it holds for all even numbers"

» "Induction over powers of two"

» "If P holds for a power of two x, and we can show therefore P
holds for 2x, then it holds for all powers of two"
» "Induction over strings"
» "If P holds for a string S, and we can show therefore P holds

for S but with some arbitrary character appended, P holds for
all strings"



Inductively Defined Structures

» Our original induction principle is nothing special

» Each of these inductive motors is defined over an inductively
defined structure

>

>
>
>

"The next even number" is two bigger than the last
"The next power of two" is two times the last

"The next string" is one character longer

"The next natural number" is one bigger than the last



The Natural Numbers

» So far we've described natural numbers as an open interval
from 0. ..

» We could instead say "0 is a natural number, and forall natural
numbers n, 14+n is a natural number".

» This framing is an inductive definition

» Inductive definitions automatically provide inductive principles
(motors)



Other inductive structures

Lists

Trees

Graphs

Haskell programs

vVvYyyvyy

...and morel!



Induction and Recursion

» Induction is dual to recursion

» Recursion breaks down a big problem into small pieces
» Induction builds up a big object (a value, a proof) out of small
pieces
» Induction is the natural tool for proofs about computer
programs
» Whether implemented with recursion or loops



List Processing

length []1 =0
length (_x:1) = 1 + length 1

append [] 12 = 12
append (x:11) 12 = x:(append 11 12)

reverse [] = []
reverse (x:1) = append (reverse 1) [x]



Some Properties

» forall I1 12, 1length 11 + length 12 = length (append 11
12)

» forall |, length 1 = length (reverse 1)
» forall | x, reverse (append 1 [x]) = x:(reverse 1)

» forall |, 1 = reverse (reverse 1)



Length-Append-Dist

» forall I1 12, 1length 11 + length 12 = length (append 11
12)



Length-Append-Dist

» forall I1 12, 1length 11 + length 12 = length (append 11
12)

» By induction on I1.



Length-Append-Dist

» forall I1 12, 1length 11 + length 12 = length (append 11
12)
» By induction on I1.

> (I1 =]]). WTP length [] + length 12 = length
(append [1 12).



Length-Append-Dist

» forall I1 12, 1length 11 + length 12 = length (append 11
12)
» By induction on I1.
» (11 =[]). WTP length [] + length 12 = length
(append [1 12).
» In other words, length 12 = length 12, which is trivially
true.



Length-Append-Dist

» forall I1 12, 1length 11 + length 12 = length (append 11
12)
» By induction on I1.
» (11 =[]). WTP length [] + length 12 = length
(append [1 12).
» In other words, length 12 = length 12, which is trivially
true.
» (I1 = (x:I1")). IH: length 11’ + length 12 = length
(append 11’ 12).



Length-Append-Dist

» forall I1 12, 1length 11 + length 12 = length (append 11
12)

» By induction on I1.
» (11 =[]). WTP length [] + length 12 = length
(append [1 12).
» In other words, length 12 = length 12, which is trivially
true.
» (I1 = (x:I1")). IH: length 11’ + length 12 = length
(append 11’ 12).
> WTP length (x:11’) + length 12 = length (append
(x:11°) 12).



Length-Append-Dist

» forall I1 12, 1length 11 + length 12 = length (append 11
12)

» By induction on I1.
» (11 =[]). WTP length [] + length 12 = length
(append [1 12).
» In other words, length 12 = length 12, which is trivially
true.
» (I1 = (x:I1")). IH: length 11’ + length 12 = length
(append 11’ 12).
> WTP length (x:11’) + length 12 = length (append
(x:11°) 12).
»> By the definition of append and of length, this is:



Length-Append-Dist

» forall I1 12, 1length 11 + length 12 = length (append 11
12)

» By induction on I1.
» (11 =[]). WTP length [] + length 12 = length
(append [1 12).
» In other words, length 12 = length 12, which is trivially
true.
» (I1 = (x:I1")). IH: length 11’ + length 12 = length
(append 11’ 12).
> WTP length (x:11’) + length 12 = length (append
(x:11°) 12).
»> By the definition of append and of length, this is:
> 1 + length 1’ + length 12 = length (x:(append 11’
12)) = 1 + length (append 11’ 12).



Length-Append-Dist

» forall I1 12, 1length 11 + length 12 = length (append 11
12)

» By induction on I1.
» (11 =[]). WTP length [] + length 12 = length
(append [1 12).
» In other words, length 12 = length 12, which is trivially
true.
» (I1 = (x:I1")). IH: length 11’ + length 12 = length
(append 11’ 12).
> WTP length (x:11’) + length 12 = length (append
(x:11°) 12).
»> By the definition of append and of length, this is:
> 1 + length 1’ + length 12 = length (x:(append 11’
12)) = 1 + length (append 11’ 12).
» We know by the IH that length (append 11’ 12) and
length 11’ + 12 are the same value, so the property is
proved.



Reverse Preserves Length

» forall |, length 1 = length (reverse 1)



Reverse Preserves Length

» forall |, length 1 = length (reverse 1)
» By induction on |



Reverse Preserves Length

» forall |, length 1 = length (reverse 1)
» By induction on |

» (I=1]). WTP length [] = length (reverse []);
reverse [] = [] so this is evident.



Reverse Preserves Length

» forall |, length 1 = length (reverse 1)
» By induction on |
» (I=1]). WTP length [] = length (reverse []);

reverse [] = [] so this is evident.
> (I = (xI). IH: length 1’ = length (reverse 1’).



Reverse Preserves Length

» forall |, length 1 = length (reverse 1)
» By induction on |
» (I=1]). WTP length [] = length (reverse []);
reverse [] = [] so this is evident.
» (I = (xI')). IH: length 1’ = length (reverse 17).
> WTP length (x:1°) = length (reverse (x:1°)).



Reverse Preserves Length

» forall |, length 1 = length (reverse 1)
» By induction on |

» (I=1]). WTP length [] = length (reverse []);
reverse [] = [] so this is evident.
» (I = (xI')). IH: length 1’ = length (reverse 17).
> WTP length (x:1°) = length (reverse (x:1°)).
»> By def'n of reverse, 1 + length 1’ = length (append
(reverse 1°) [x]).



Reverse Preserves Length

» forall |, length 1 = length (reverse 1)
» By induction on |

» (I=1]). WTP length [] = length (reverse []);
reverse [] = [] so this is evident.
» (I = (xI')). IH: length 1’ = length (reverse 17).
> WTP length (x:1°) = length (reverse (x:1°)).
»> By def'n of reverse, 1 + length 1’ = length (append
(reverse 1°) [x]).
»> By the last property, length (append (reverse 1’) [x])
= length (reverse 1’) + length [x] = length
(reverse 1°) + 1.



Reverse Preserves Length

» forall |, length 1 = length (reverse 1)
» By induction on |

» (I=1]). WTP length [] = length (reverse []);
reverse [] = [] so this is evident.
» (I = (xI')). IH: length 1’ = length (reverse 17).

> WTP length (x:1°) = length (reverse (x:1°)).

»> By def'n of reverse, 1 + length 1’ = length (append
(reverse 1°) [x]).

»> By the last property, length (append (reverse 1’) [x])
= length (reverse 1’) + length [x] = length
(reverse 1) + 1.

»> By the IH, length (reverse 1’) = length 1°, so we have
to show 1 + length 1’ = length 1’ + 1, which is
immediate by the commutativity of addition.



Reverse-Append-Single

> forall | x, reverse (append 1 [x]) = x:(reverse 1)



Reverse-Append-Single

> forall | x, reverse (append 1 [x]) = x:(reverse 1)
» By induction on |.



Reverse-Append-Single

> forall | x, reverse (append 1 [x]) = x:(reverse 1)
» By induction on |.

» (I =]]). reverse (append [1 [x]) = reverse [x] = [x]
= (x:reverse []).



Reverse-Append-Single

> forall | x, reverse (append 1 [x]) = x:(reverse 1)
» By induction on |.

» (I =]]). reverse (append [1 [x]) = reverse [x] = [x]
= (x:reverse []).

» (I = (y:I'). IH: reverse (append 1’ [x]) = x:(reverse
1%).



Reverse-Append-Single

> forall | x, reverse (append 1 [x]) = x:(reverse 1)
» By induction on |.

» (I =]]). reverse (append [1 [x]) = reverse [x] = [x]
= (x:reverse []).
» (I = (y:I'). IH: reverse (append 1’ [x]) = x:(reverse
1%).
> WTP reverse (append (y:1’) [x]) = x:(reverse
(y:1”))



Reverse-Append-Single

> forall | x, reverse (append 1 [x]) = x:(reverse 1)
» By induction on |.

» (I =]]). reverse (append [1 [x]) = reverse [x] = [x]
= (x:reverse []).
» (I = (y:I'). IH: reverse (append 1’ [x]) = x:(reverse
1%).
> WTP reverse (append (y:1’) [x]) = x:(reverse
(y:1”))
»> By def'n of append and reverse: reverse (append (y:1?)
[x]) = append (reverse (append 1’ [x])) [yl.



Reverse-Append-Single

> forall | x, reverse (append 1 [x]) = x:(reverse 1)
» By induction on |.
» (I =]]). reverse (append [1 [x]) = reverse [x] = [x]
= (x:reverse []).
» (I = (y:I'). IH: reverse (append 1’ [x]) = x:(reverse

12).
> WTP reverse (append (y:1’) [x]) = x:(reverse
(y:1”))
»> By def'n of append and reverse: reverse (append (y:1?)
[x]) = append (reverse (append 1’ [x])) [yl.
>

By the IH, reverse (append 1’ [x]) = x:(reverse 1?),
so we have append (x:(reverse 1)) [yl = x: (append
(reverse 1°) [yl).



Reverse-Append-Single

> forall | x, reverse (append 1 [x]) = x:(reverse 1)

» By induction on |.
» (I =]]). reverse (append [1 [x]) = reverse [x] = [x]
= (x:reverse []).
» (I = (y:I'). IH: reverse (append 1’ [x]) = x:(reverse
1).

> WTP reverse (append (y:1’) [x]) = x:(reverse
(y:1”))

»> By def'n of append and reverse: reverse (append (y:1?)
[x]) = append (reverse (append 1’ [x])) [yl.

»> By the IH, reverse (append 1’ [x]) = x:(reverse 1°),
so we have append (x:(reverse 1)) [yl = x: (append
(reverse 1°) [yl).

» On the right side, we have x: (reverse (y:1’)) =
x: (append (reverse 1’) [yl), which is just our left hand
side.



Reverse-Append-Single

» forall | x,

reverse (append 1 [x]) = x:(reverse 1)

» By induction on |.
» (I =]]). reverse (append [1 [x]) = reverse [x] = [x]

= (x:reverse []).
» (I = (y:I'). IH: reverse (append 1’ [x]) = x:(reverse

1%).
>

>

WTP reverse (append (y:1’) [x]) = x:(reverse
(y:1”))

By def'n of append and reverse: reverse (append (y:17)
[x]) = append (reverse (append 1’ [x])) [yl.

By the IH, reverse (append 1’ [x]) = x:(reverse 1?),
so we have append (x:(reverse 1)) [yl = x: (append
(reverse 1°) [yl).

On the right side, we have x: (reverse (y:1°)) =

x: (append (reverse 1’) [yl), which is just our left hand
side.

So the left and right sides are equal and the theorem is proved.



Reverse-Self-Inverse

» forall |, 1 = reverse (reverse 1)



Reverse-Self-Inverse

» forall |, 1 = reverse (reverse 1)
» By induction on |.



Reverse-Self-Inverse

» forall |, 1 = reverse (reverse 1)
» By induction on |.

> (I =1]). reverse (reverse []) = reverse [] = [].



Reverse-Self-Inverse

» forall |, 1 = reverse (reverse 1)
» By induction on |.

> (I =1]). reverse (reverse []) = reverse [] = [].
> (I=(xI). IH: 1’ = reverse (reverse 17).



Reverse-Self-Inverse

» forall |, 1 = reverse (reverse 1)
» By induction on |.

> (I =1]). reverse (reverse []) = reverse [] = [].
> (I=(xI). IH: 1’ = reverse (reverse 17).
> WTP (x:1’) = reverse (reverse (x:1%)).



Reverse-Self-Inverse

» forall |, 1 = reverse (reverse 1)

» By induction on |.
> (I =1]). reverse (reverse []) = reverse [] = [].
> (I=(xI). IH: 1’ = reverse (reverse 17).
WTP (x:1°) = reverse (reverse (x:1’)).
By def'n of reverse: reverse (reverse (x:1’)) = reverse
(append (reverse 1°) [x]).

vVl



Reverse-Self-Inverse

» forall |, 1 = reverse (reverse 1)
» By induction on |.

> (I =1]). reverse (reverse []) = reverse [] = [].
> (I=(xI). IH: 1’ = reverse (reverse 17).
> WTP (x:1’) = reverse (reverse (x:1%)).
> By def'n of reverse: reverse (reverse (x:1’)) = reverse
(append (reverse 1°) [x]).
»> By the previous theorem, reverse (append (reverse 1°)
[x]) = x: (reverse (reverse 17)).



Reverse-Self-Inverse

> forall |, 1

= reverse (reverse 1)

» By induction on |.

> (1=

). reverse (reverse [1) = reverse []1 = [].

> (I=(xI). IH: 1’ = reverse (reverse 17).

>
>

>

WTP (x:1°) = reverse (reverse (x:1’)).

By def'n of reverse: reverse (reverse (x:1’)) = reverse
(append (reverse 1°) [x]).

By the previous theorem, reverse (append (reverse 1°)
[x]) = x: (reverse (reverse 17)).

But reverse (reverse 1) is just 1’ by the IH, so we've
shown what we are trying to prove.



Higher-Order Functions

map _f []

=[]
map £ (x:1) =

(f x):(map £ 1)

filter _f [1 = [
filter £ (x:1)
| £ x = x:(filter £ 1)
| otherwise = filter f 1

double_all [] = []
double_all (x:1) = (x+x) : double_all 1

» Formally state and prove these properties:
» "The output of map f 1 has the same length as the input list"
» "The output of map f (append 11 12) is the same as
append (map f 11) (map f 12)"
> "map (x 2) is equivalent to double_all"
» What does it mean for two functions to be equivalent?



	Induction, Revisited
	Structural Induction on Lists

